libre मुक्त ಮುಕ್ತ livre libero ముక్త 开放的 açık open nyílt オープン livre ανοικτό offen otevřený öppen открытый வெளிப்படை

USE IMPROVE (3)) EVANGELIZE

SunTM xVM Hypervisor

Gary Pennington Solaris Kernel Engineer April 24, 2008

Agenda

- Hypervisors 101
- Introduction to Sun[™] xVM Hypervisor
- Use Cases
- Using the hypervisor
 - Control domain: booting, services, tools
 - Guest domains: creation, booting
 - Debugging
- Futures

Hypervisors 101

- Provides a "Virtual Machine"
- Not new VM/370 over 30 years ago
- Controls hardware memory/cpu/io devices
- Schedules cpus/memory/io rate
- May emulate real devices
- For x86/x64 multiple choices available:
 - Xen
 - VMWare
 - MSFT Virtual Server
 - Others

Para vs. Full Virtualization

- Full Virtualization (HVM):
 - Runs binary image of "metal" OS
 - Must emulate i/o devices
 - Can be slow
 - Need help from hardware
 - May use trap and emulate or rewriting
- Para-virtualization
 - Runs OS ported to special arch
 - Uses generic "virtual" device drivers
 - Can be more efficient since it is hypervisor-aware

Full Virtualization (HVM)

- Some operating systems have not been paravirtualized
 - Microsoft, older Solaris, older Linux, OS/2 (!), ...
- New processor features to enable full virtualization
 - Intel VT and AMD-V
 - Needs to be enabled by the BIOS, so having the right CPU may not be enough
 - Trap to the hypervisor for "unsafe" instructions, memory access, etc.
 - · Hypervisor emulates some effects, uses device emulation for others

Agenda

- Hypervisors 101
- Introduction to SunTM xVM Hypervisor
- Use Cases
- Using the hypervisor
 - Control domain: booting, services, tools
 - Guest domains: creation, booting
 - Debugging
- Futures

What is Sun[™] xVM hypervisor?

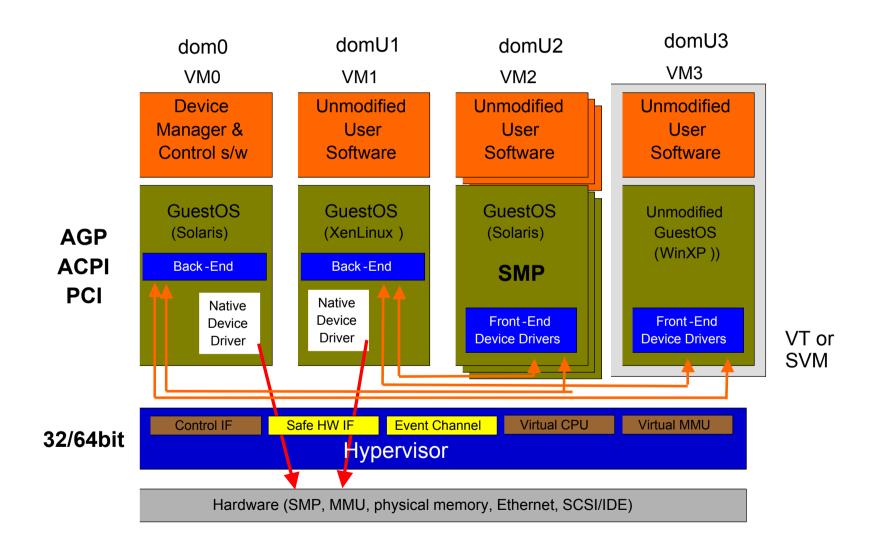
- An open source hypervisor
- A port of Solaris to run on the hypervisor
- A set of control tools for the hypervisor
- A set of support tools for running other operating systems on the hypervisor under the direction of Solaris

Open source hypervisor technology

- Originally developed at the University of Cambridge, England
 - Licensed under the GPLv2 and LGPL
 - XenSource (now Citrix): a start-up created by the original developers of the project to commercialize the results
- Significant contributions from Intel, AMD, IBM, HP, Fujitsu, and more
- Mostly x86, but also available on PPC and **Itanium**
- Now at version 3.1.3 (3.1.4-rc8)

Hypervisor Design Principles and Goals

- Existing applications and binaries must run unmodified
- Support for multi-process, multi-application application environments
 - Permit complex server configurations to be virtualized within a single guest OS instance
- Paravirtualization (PV) enables high performance and strong isolation between domains
 - Particularly on uncooperative architectures (x86)
- Support up to 100 active VM instances on modern servers
- Live migration of VM instances between servers



Sun[™] xVM Architecture

Key Capabilities

- Checkpoint/restart and live migration
 - Managed provisioning
 - Grid operations: virtual platform
- Multiple OSes running simultaneously
 - Solaris, Linux, Windows
 - No longer a boot-time decision
- Special purpose kernels
 - JVM, drivers, filesystems, ...

Agenda

- Hypervisors 101
- Introduction to Sun[™] xVM Hypervisor
- Use Cases
- Using hypervisor
 - Control domain: booting, services, tools
 - Guest domains: creation, booting
 - Debugging
- Futures

Use Cases (Enterprise)

- Single node consolidation/test system
- Multi (many) node virtual infrastructure
 - Windows, Linux, Solaris Consolidation
 - Application Grids
 - e.g. Oracle's datacenters
- Utility Computing
 - Amazon EC2
- Virtual Desktop environments
 - Call centers (DT)
- Quick roll out/re-provision/disaster recovery
- Virtual appliance deployment

Use Cases (Developers)

- Good for:
 - Develop and test:
 - · Fast turn-around time (shutdown and reboot)
 - User-level code
 - · Installation
 - General kernel components
 - Older Solaris, Microsoft, Linux, ...
 - "Network in a box"
 - Sharing canned system configurations
- Clone and snapshot of zvols
 - Quickly produce multiple identical guest domains
 - Quickly return to a known stable state

Agenda

- Hypervisors 101
- Introduction to Sun[™] xVM Hypervisor
- Use Cases
- Using hypervisor
 - Control domain: booting, services, tools
 - Guest domains: creation, booting
 - Debugging
- Futures

USE IMPROVE (3)) EVANGELIZE

Using xVM: Booting the control domain

Grub loads the hypervisor, kernel and boot archive:

```
title Solaris xVM
kernel$ /boot/$ISADIR/xen.gz
module$ /platform/i86xpv/kernel/$ISADIR/unix
  /platform/i86xpv/kernel/$ISADIR/unix
module$ /platform/i86pc/$ISADIR/boot archive
```

- Hypervisor:
 - Initializes, probes hardware, etc.
 - Creates dom0 environment around the kernel and boot archive
 - Jumps to dom0 kernel
- Note:
 - Extended Grub syntax to allow expansion of environment specific tokens (kernel\$, module\$, \$ISADIR)
 - Boot archive is separated into 32 bit and 64 bit

Using xVM: Serial Consoles

 If you want to see hypervisor output over a serial line, edit the kernel\$ line:

```
title Solaris xVM
kernel$ /boot/$ISADIR/xen.gz console=com1 com1=9600,8n1
module$ /platform/i86xpv/kernel/$ISADIR/unix
  /platform/i86xpv/kernel/$ISADIR/unix -B console=hypervisor
module$ /platform/i86pc/$ISADIR/boot archive
```


Using xVM: dom0 services

- svc:/system/xvm/store:default
 - File-based database used to store configuration of known domains
- svc:/system/xvm/xend:default
 - Long running daemon used by administrative tools to communicate with the hypervisor
 - Performs much of the work of creating guest domains, migration, etc.
- svc:/system/xvm/console:default
 - Mediates access to guest domain consoles (badly)
- svc:/system/xvm/domains:default
 - Automatically creates and destroys guest domains at service start/stop time (typically system boot/shutdown)

Using xVM: dom0 tools (1)

- xm
 - Low-level xVM specific command to guery the state of the hypervisor, create domains, manipulate configuration, etc.

```
shocks# xm start x1
shocks# xm list
                     Mem VCPUs
                                              Time(s)
Name
                  ΙD
                                     State
Domain-0
                     984
                                               810.3
                     984 2
1023 1
                                                 9.1
\times 1
shocks# xm console x1
x1 console login: root
Password:
Last login: Sat Sep 8 02:02:28 on console
Sep 8 18:00:13 x1 login: ROOT LOGIN /dev/console
Sun Microsystems Inc. SunOS 5.11
                                       matrix-build-2007-08-21 October 2007
```


Using xVM: dom0 tools (2)

- virsh
 - hypervisor agnostic command to query the state of the hypervisor, create domains, manipulate configuration, etc.
 - Only xVM support for now, but Logical Domains coming
 - Built on libvirt

```
: shocks#; virsh dominfo x1
Td:
Name:
                \times 1
UUID:
                b0bece06-8bee-085b-b657-dd642da0daa0
OS Type:
                linux
State:
                blocked
CPU(s):
CPU time: 98.7s
Max memory: 1048576 kB
Used memory: 1047540 kB
: shocks#;
```


Using xVM: dom0 tools (3)

- virt-install
 - Facilitate the installation of para-virtual and HVM guests
 - Interactive or command line arguments
 - Install off media (DVD), from an ISO, or over NFS
 - Built on libvirt

Solaris PV Guest

```
virt-install -n solarisPV --paravirt -r 1024 \
  --nographics -f /export/solarisPV/root.img -s 16 \
  -1 /ws/matrix-gate/public/isos/72-0910/solarisdvd.iso
```

Solaris HVM Guest

```
virt-install -n solarisHVM --hvm -r 1024 --vnc \
  -f /export/solarisHVM/root.img -s 16 \
  -c /ws/matrix-gate/public/isos/72-0910/solarisdvd.iso
```


USE IMPROVE (3)) EVANGELIZE

Using xVM: dom0 tools (3) cont'd

virt-install

WinXP HVM Guest

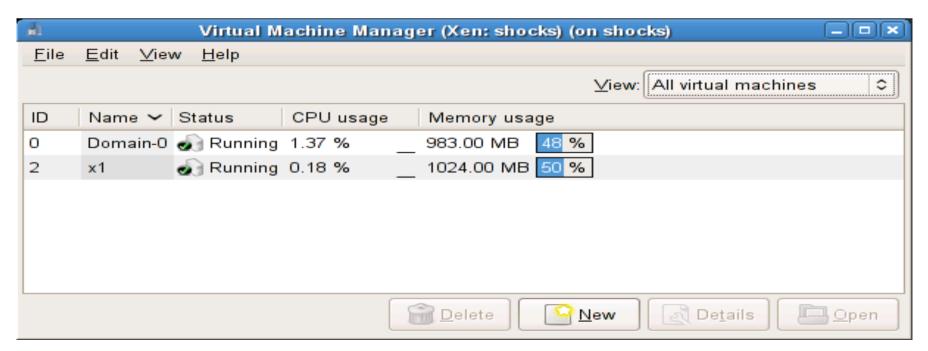
```
# virt-install -n winxp --hvm -r 1024 --vnc \
 -f /export/winxp/root.img -s 16 -c /windows/media.iso
```

 Set the VNC password property in xend's SMF configuration before starting a HVM domain which uses VNC

```
# svccfq -s xvm/xend setprop \
       config/vncpasswd = astring: \"somepwd\"
# svcadm refresh xvm/xend; svcadm restart xvm/xend
```

If remotely displaying the VNC session, you must also set the vnc-listen property

```
# svccfq -s xvm/xend setprop \
       config/vnc-listen = astring: \"0.0.0.0\"
# sycadm refresh xym/xend; sycadm restart xym/xend
```

Using xVM: dom0 tools (4)

- virt-manager (not yet integrated)
 - Gnome desktop application for managing virtual machines
 - Single physical system focus
 - Built on libvirt
 - http://opensolaris.org/os/project/jds/

Beyond dom0

- xVM Ops Center
 - Combining virtualization and management
 - See http://www.sun.com/software/products/xvmopscenter/ir
- OpenxVM
 - See https://openxvm.dev.java.net/

Using xVM: Guest domain creation

- Create new guest domains using virt-install
 - Normal Solaris install for the guest domain, including jumpstart, etc.
 - Linux and HVM (e.g. Windows) install still something of a work in progress
- Acquire guest domain disk images and configuration from others
 - Save the need for everyone to run through the installation
 - Guest domains have relatively small configuration matrix
 - Clone and snapshot of ZFS volumes a powerful management tool

Using xVM: Debugging the hypervisor

- printf() is your friend (or not)
- If the hypervisor panics, Solaris can usually take a dump
 - Includes the hypervisor image, which looks like a kernel module in the dump

Using xVM: Debugging dom0

- Typical OpenSolaris tools work well
 - mdb, kmdb, dtrace
- The hypervisor console can be used to send a 'break' signal to domains
 - Type '^A^A'A' at the hypervisor console to start
 - Particularly useful for dom0
- Dom0 tools
 - Many are written in python
 - /usr/lib/python2.4/vendor-packages/xen/
 - Edit and restart xend smf service

Using xVM: Debugging domU

- Dom0 tools can be used to:

 - Dump the image of a guest domain, for use with mdb:
 - xm dump-core <domain> <dump-file>
 - mdb <dump-file>

When things go wrong

- Log files in /var/log/xen:
 - xend.log logging and backtraces from the long running daemon
 - xpvd-event.log logs from backend device creation, removal, etc.

Agenda

- Hypervisors 101
- Introduction to Sun[™] xVM Hypervisor
- Use Cases
- Using hypervisor
 - Control domain: booting, services, tools
 - Guest domains: creation, booting
 - Debugging
- Futures

Past Solaris Work

- snv 75
 - Xen 3.0.4
 - Libvirt 0.2.3
 - Virt-install 0.103.0
- snv 81
 - PV net drivers
- snv 85
 - Xen 3.1.2
 - Libvirt 0.4.0
- snv 87
 - PV disk drivers

PV drivers for Solaris 10

- No PV version of Solaris 10
 - IO performance using emulated hardware (IDE and RTL8139) is poor
- Provide PV disk and network drivers for older Solaris releases
- Bundled in a future Solaris 10 update
- Performance of PV drivers in HVM domain looks similar to that of a fully PV guest domain

USE IMPROVE (3)) EVANGELIZE

Windows PV drivers

Planned for 2008

Future Solaris work

Projects that are still in early development/ porting phase

- blktap
- virt-install 0.300
- FMA for xVM
- Security for xVM
- Crossbow
- Live CD and Image Packaging System (IPS)

USE IMPROVE (3) EVANGELIZE

Finding out more

- OpenSolaris community
 - xen-discuss@opensolaris.org
 - http://opensolaris.org/os/community/xen
 - irc://irc.oftc.net/solaris-xen
- **OpenxVM Community**
 - http://www.openxvm.org/

libre ಮುಕ್ತ livre libero ముక్త 开放的 açık open nyílt オープン livre ανοικτό offen otevřený öppen открытый வெளிப்படை

USE IMPROVE © EVANGELIZE

Thank you!

Gary Pennington
Solaris Kernel Engineer
http://blogs.sun.com/garypen