
Global Synchronization in a Mobile Context

Transfer Report

Andrew Hughes

October 20, 2006



Contents

1 Introduction 5

2 Literature Review 7
2.1 Algebraic Process Calculi . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 The Dining Philosophers in CCS . . . . . . . . . . . . 12
2.1.3 Advantages and Limitations of CCS . . . . . . . . . . . 14

2.2 Timed Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Extending TPL . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Advantages and Disadvantages of Timed Calculi . . . . 18

2.3 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Scope Mobility . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Distribution and Migration . . . . . . . . . . . . . . . . 28

2.4 Typed Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Type Systems for the π Calculus . . . . . . . . . . . . 45
2.4.2 Type Systems for the Ambient Calculus . . . . . . . . 48

2.5 Biological Applications . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Current Work 54
3.1 The Calculus of Synchronous

Encapsulation (CaSE) . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1 Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Clock Stopping and Insistency . . . . . . . . . . . . . . 56
3.1.3 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Localising the Calculus . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Adding Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Location Mobility . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Process Mobility . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 Bouncers . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 The Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1



3.5 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 The Type System . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Future Work 79
4.1 The Type System . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Structural Congruence . . . . . . . . . . . . . . . . . . 80
4.2.2 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2



List of Figures

2.1 Graph of a.0 | a.0 . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Graph of a.0 + a.0 . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Dining Philosophers in CCS . . . . . . . . . . . . . . . . 13
2.4 Spatial diagram of m[in n.out n.P ] | n[] . . . . . . . . . . . . . 35
2.5 Spatial diagram of n[m[out n.P ]] . . . . . . . . . . . . . . . . 36
2.6 Spatial diagram of m[P ] | n[] . . . . . . . . . . . . . . . . . . . 36
2.7 Example P System . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 The Musical Chairs Environment . . . . . . . . . . . . . . . . 71

3



List of Tables

2.1 LCCS Dynamic SOS Rules . . . . . . . . . . . . . . . . . . . . 29
2.2 Typing Rules from [61] . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Semantics: Common CaSE Subset . . . . . . . . . . . . . . . . 67
3.2 Semantics: Clock Hiding and Mobility . . . . . . . . . . . . . 68
3.3 Semantics: Locality Mobility . . . . . . . . . . . . . . . . . . . 69
3.4 Semantics: Open . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Semantics: Process Mobility . . . . . . . . . . . . . . . . . . . 70
3.6 Summary of Processes and Derived Syntax for Musical Chairs 72
3.7 Types: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 Types: Operators . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.9 Types: Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Types: Linking Processes to Localities . . . . . . . . . . . . . 79
4.2 Semantics: Summation . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Semantics: Structural Congruence . . . . . . . . . . . . . . . . 81

4



Chapter 1

Introduction

CCS [38] is a process algebra commonly used for modelling synchronous com-
munication between two processes, where one sends a signal and the other
receives it at the same time (a concept referred to as local synchronisation).
However, it cannot directly represent systems involving synchronisation of a
sender with an arbitrary number of recipient processes (known as global syn-
chronisation) in a compositional manner. Crucially, the semantics of a broad-
cast agent cannot suitably be represented using CCS. If the agent is defined
as transmitting a signal to each of the recipients sequentially, through multi-
ple local synchronisations, then its semantics will become non-compositional,
because such behaviour depends upon the number of recipients. Each time
a new recipient is introduced, or one of the existing ones is removed, the
semantics will have to be changed.

A solution to this deficiency lies in determining when all possible synchro-
nisations have taken place. With this facility available, the broadcast agent
can recurse, transmitting signals, until this condition holds. The family of
abstract timed process calculi (including TPL[24] and CaSE[50]) allow this
by extending CCS with abstract clocks. These don’t represent real time, with
units such as minutes and seconds, but are instead used to form synchronous
cycles of internal actions followed by clock ticks. A concept known as max-
imal progress enforces the precedence of internal actions over clock ticks,
allowing the possible synchronisations to be monitored. When a synchroni-
sation takes place, it appears to the system as an internal action. Thus, with
maximal progress, synchronisations prevent the clock from ticking, and as a
result, the occurrence of a clock tick also indicates that there are no possible
synchronisations.

However, the timed calculi mentioned above lack any notion of spatial dis-
tribution or mobility. Thus, while they can adequately represent large static
systems, involving both local and global synchronisation, they fail to model
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more mobile systems, where the location of a process can change during exe-
cution. In contrast, the ambient calculus [13] includes both distribution (via
structures known as ambients) and mobility (by allowing these structures to
be moved, along with their constituent processes, during execution). But, it
suffers from similar deficiencies to CCS when modelling global synchronisa-
tion.

This report presents the calculus of Typed Nomadic Time (TNT) [28],
which combines the abstract timed calculus, CaSE, with notions of distribu-
tion and mobility from the ambient calculus and its variants ([33, 65]). This
allows the creation of a compositional semantics for mobile component-based
systems, which utilise the notion of communication between arbitrary num-
bers of processes within a mobile framework. To extend the example of a
broadcast agent given above, this extension allow broadcasts to be localised
to a particular group of processes, which can change during execution. Cur-
rent work on TNT is discussed in chapter 3, while chapter 2 contains a review
of the existing literature in this area. Finally, chapter 4 discusses the future
development of the calculus, including possible case studies.
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Chapter 2

Literature Review

Concurrency is an inherent part of the real world. Multiple events take
place simultaneously, and each of these events can interact and affect others.
Early computational models, however, take a simpler idealised view, where
events occur sequentially and in isolation. Universal Turing machines [67]
have proven to be computationally complete; they are capable of simulat-
ing all recursive functions. However, they do not directly model concurrent
execution.

So, if these models can have this level of computational power without
attempting to represent this particular aspect, why is it necessary to model
concurrency at all? Even though a method of modelling phenomena exists,
and has a certain level of expressivity, it doesn’t imply that it is the most
appropriate for a particular context. The existence of both Turing machines
and the λ calculus already demonstrates this point. While both have proven
equivalent in power, they take different approaches to achieving this.

To see the effect of concurrency on computation, consider a simple proto-
typical example, as demonstrated by Milner [41]. Observe the following pro-
grams,

x= 2; (P1)

x= 1;

x= x + 1; (P2)

where we assume that each line is an atomic action.
In a sequential system, such as may be modelled by a Turing machine or

the λ calculus, both these programs set x to 2. In such a system, there is
only a single flow of control, so nothing else can modify the value of x.
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However, in a concurrent system, multiple control flows or processes exist,
each running in parallel with the others. With P1, the value of x will always
be equal to two immediately after execution, as the assignment takes place
within a single atomic action. However, in P2, another process is free to
modify x in the gap1 between the assignment of the value 1 and the later
summation which makes x 2.

Thus, if P2 is run in parallel with a third program,

x = 3; (P3)

then x may end up being either 2, 3 or 4, depending on whether P3 exe-
cutes before the first line, after the completion of P2, or after the first line
respectively. With P1 and P3, only 2 or 3 can result (which one depends on
the order the two programs are run). This is known as a race condition, as
the final value of x depends on the timing of the various modifications of its
value by the two programs. The solution to this problem is to require each
program to obtain exclusive access to x (a lock) for the extent of its use.

This example demonstrates that modelling concurrency is not so much
about multiple programs executing at the same time, but instead concerns
how they interact. If each program exists in its own isolated environment,
then no interactions will take place and a sequential model for each would
be suitable. Indeed, this is the way most operating systems handle running
multiple programs. Thus, it follows that sequential models are not distinct
from concurrent models, but a subset where this additional restriction of
isolation applies.

Dijkstra’s classic ‘Dining Philosophers’ problem [19] illustrates further
issues which may arise in a situation where multiple processes must interact
to achieve their goal. In this scenario, five philosophers are seated around
a table, each with a plate of spaghetti and a fork. The philosophers divide
their time between thinking and eating. In order to eat, a philosopher must
obtain two forks, necessitating some form of interaction. This is a common
situation in concurrency, where multiple parallel processes (the philosophers)
need to gain access to a limited resource (the forks).

In cases where things go awry, deadlock or starvation may result. For
example, if the philosophers simultaneously pick up the forks on their left,
then none of them will be able to eat; they will all end up waiting on a fork
held by another philosopher. The system is said to be deadlocked, as none of
the processes can obtain a lock on the resource it needs, as a lock is already
held by one of the other processes2. Alternatively, starvation may result if

1Assuming x is accessible by more than one process.
2The solution to breaking this deadlock is to break the symmetry; if the fifth philosopher
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one of the philosophers never stops eating and consequently never releases
the forks; the resources are unfairly distributed to the deficit of one of the
processes.

As can be seen from these examples, concurrency raises issues outside the
reach of traditional sequential models of computation. Thus, just as there is a
requirement for models of sequential computation, models that can represent
these phenomena are also necessary. This is even more relevant today, as
hardware advances make more machines capable of true concurrency (via
dual-core processors and beyond) and distributed computing paradigms, such
as services, become more prevalent. To adequately work with these systems,
appropriate formal models are needed to represent them and highlight their
flaws. Many such models have been developed, and we will now consider a
subset of these.

2.1 Algebraic Process Calculi

Algebraic process calculi model the interaction of concurrent processes using
a (usually small) set of algebraic operators, as opposed to the true concur-
rency of Mazurkiewicz trace theory [35] or the graphical style associated with
Petri nets [53] and Hewitt’s Actor model [25]. Interaction between processes
is via message-passing, rather than via shared memory3 or a tuple space [15].

The foundational calculi in this field are Hoare’s CSP [26], Milner’s CCS
[38] and Bergstra and Klop’s ACP [5], all of which were first developed in the
late 1970s to early 1980s. CSP was originally developed as a programming
language, with a relatively large syntax, and later given a theoretical basis,
following Milner’s work on CCS. Both calculi have influenced each other,
while starting out from different perspectives (Milner’s being more of a the-
oretical one). ACP shares many of the ideas of CCS, and can be regarded as
an ‘alternative formulation’ [5], using a similar set of operators to achieve a
different goal.

Here, the focus is on CCS, as it forms the basis for most of the other
calculi considered, including the π calculus [45] and CaSE [50]. Of the three,
CCS has the most minimal syntax with additional features such as failure
(represented in both CSP and ACP) needing to be derived from or appended
to this core set. From a theoretical perspective, this is advantageous, as

tries to take the fork on the right first, he or she will be unable to proceed, but the first
philosopher will, using the fifth philosopher’s left fork.

3Although shared memory and message-passing are not orthogonal; a shared memory
space may be represented as a communicating resource in a message-passing system, while
message queues can be implemented in shared memory.
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it makes reasoning over the calculus a simpler process, and, as will be seen,
adding further syntax to represent more features is a relatively simple process.

2.1.1 CCS

In CCS, processes are modelled as terms ranged over by E,F . These process
terms have the following syntax:

E,F ::= 0 | α.E | E\ a | E + F | (E | F ) | X | µX.E | E[f ] (2.1)

where α, a and f are explained below.
Communication between processes is via the sending and receiving of

signals. The internal behaviour of the processes is abstracted, represented
simply by the silent action τ . The full set of actions, Act = N ∪ N ∪ {τ},
is used to describe the behaviour of the concurrent system, where N is an
infinite set of names, and N is the corresponding set of co-names, {a|a ∈ N}.
These names are usually used to represent channels, which the processes use
to communicate. Thus, a.E, where a ∈ N , represents a process whose first
action is an input on the channel a, whereas a.E (where a ∈ N ) represents
a process which initially outputs on a.

The behaviour of a single process is thus defined as a sequence of inputs,
outputs and silent actions. This can be seen in the above grammar, where
0 represents the empty process, which exhibits no behaviour, and α.E is the
action prefix used for the limited sequential composition of actions, where
α ∈ Act.

For communication to actually take place, two processes must synchro-
nize; they must emit corresponding actions on the same channel at the same
time. For this to occur, the two processes must be running in parallel. Paral-
lel composition in CCS is represented by the | operator. When two processes
are composed in this way, they may both perform their corresponding input
and output actions simultaneously, resulting in a τ action being emitted.

For instance, if E is considered to be a.0 and F to be a.0, then the process
formed by the composition of these two processes, E|F may initially perform
one of three actions, a, a or τ , to give three possible derivations:

1. E | F
a
→ 0|F

2. E | F
a
→ E|0

3. E | F
τ
→ 0|0
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Figure 2.1: Graph of a.0 | a.0

This is illustrated in Fig. 2.1. To make the derivation of E|F determin-
istic, the scope of a can be restricted. In CCS, an input or output can be
paired with any corresponding action which is within the scope of the chan-
nel. To force the input of E to be paired with the output of F , the scope of a
must be restricted so as to only include the two processes, E and F . This is
handled by another operator in the core syntax, \. The right operand of this
is the name of a channel whose scope is restricted to that of the left operand.
In this case, (E|F )\a appropriately limits the possible derivations to just

τ
→.

The remaining binary CCS operator is +, which provides non-deterministic
choice between two processes. Once a derivation is made from one process,
the option of performing the actions of the other is lost. This contrasts with
the parallel composition operator, where the other process remains running in
parallel. Choice thus effectively corresponds to the familiar idea of branching
found in sequential models. Using the same two exemplar processes again,
E + F may derive as follows:

1. E + F
a
→ 0

2. E + F
a
→ 0

Again, this is illustrated in Fig. 2.2. There are clearly similarities between
the two sets of possible derivations, but note that, with choice, there is no
possibility of synchronisation.

The remaining operators in CCS handle recursion and relabelling. µX.E
binds X with the value of E, so that later occurrences of X are replaced with
E. The function, f , in E[f ] has the type Act → Act and converts actions,
while preserving τ and complementation.
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Figure 2.2: Graph of a.0 + a.0

2.1.2 The Dining Philosophers in CCS

To fully appreciate CCS, it is necessary to see how it may be used to model
an example scenario. Consider the dining philosopher’s example illustrated
above. Modelling this in CCS involves first ascertaining what processes form
the basis of this ‘system’. Clearly, each philosopher plays a part, so they
should be represented by a process. Returning to the original definition of
the problem, each philosopher may choose to eat or think. In CCS, this can
be represented as:

Philosopher = EatingPhilosopher + ThinkingPhilosopher (2.2)

where the philosopher is recursively defined as making the choice between
becoming an EatingPhilosopher process or a ThinkingPhilosopher process.
Defining the latter is simple; thinking is simply some internal process of the
philosopher:

ThinkingPhilosopher = τ.Philosopher (2.3)

The focus of the model is on the eating process, which requires access to
the system’s shared resource: the forks. Modelling this necessitates defining
a protocol whereby the philosopher may interact with the resource in order
to obtain access to it. From this, it follows that the forks must also be
represented as processes:

Fork = µX.takeFork.putDownFork.X (2.4)

with two communication channels, takeFork and putDownFork. The fork
begins its life on the table from which it may be taken, represented here by
the receipt of an input on the takeFork channel. Once this has occurred,
the process becomes Fork′,
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Figure 2.3: The Dining Philosophers in CCS

Fork′ = putDownFork.X (2.5)

which represents the state where the fork is in use by a philosopher. The fork
can’t be used again until it has received an input on putDownFork, which
causes X to be expanded and the fork to wait for input on takeFork again.

This interaction is further clarified by defining the final process, the
EatingPhilosopher:

EatingPhilosopher = takeFork.takeFork.τ.putDownFork.putDownFork.Philosopher
(2.6)

which needs to synchronize with two available Fork processes to be able to
eat (represented by τ) and then release the forks. The system as a whole
is modelled by running a number of philosophers and forks in parallel (i.e.
multiple copies of Fig. 2.3), and restricting the scope of the fork channels in
order to enforce synchronisation.

Note that this CCS representation of the problem only models the nar-
rative version of the problem above. There is no attempt to resolve any of
the competition problems, and a strong element of non-determinism, as to
which philosopher gets which fork, still exists. It does, however, give a formal
representation of the problem and allows the effects of varying the relative
numbers of philosophers and forks to be observed via execution of the model.

Modifying this slightly gives a model that corresponds exactly to a spec-
ified number of philosophers and forks, n. From the definitions above, mul-
tiple variants may be generated, such that each philosopher and fork process
has a unique subscript. For example, Philosopher becomes Philosopheri,
where i = 1 . . . n. The same subscripting also applies to the takeFork and
putDownFork channels, so that they now correspond to a specific fork. The
original solution can thus be represented, as the case where each philoso-
pher, i, initially performs the action takeForki (to take the left fork) and
then takeForki−1 (with the exception that when i − 1 = 0, we use n) 4.

This model restricts which fork is taken by which philosopher (limiting the
possible actions, and thus removing some non-determinism), but is still prone

4Again, it is necessary to reverse the actions of Philosophern in order to obtain a
solution that does not deadlock.
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to the effects of non-deterministic choice (some philosophers may arbitrarily
choose to think instead) and fairness, with regards to action performance (if
the actions are performed in a depth-first manner, only one philosopher may
end up eating). These may be regarded as implementational aspects of the
model; all these phenomena could be represented, but a choice between these
is not made at this level of abstraction.

2.1.3 Advantages and Limitations of CCS

From its syntax, it is clear that CCS can model sequential behaviour us-
ing sequential composition (α.E), non-deterministic choice (+) and 0. This
further confirms the intuition noted earlier that sequential programs are a
subset of the larger set of concurrent programs. This is illustrated by the +
operator, which returns a smaller set of possible derivations, from the same
initial pair of processes, when compared with parallel composition (|). These
sequential operators can also be used to convert a set of parallel-composed
processes into their equivalent interleavings.

CCS can model both sequential and concurrent programs, while still
maintaining a minimal syntax. However, the calculus is not Turing-complete5;
there are limitations as to what may be expressed. As discussed earlier, Tur-
ing completeness does not necessarily guarantee the suitability of a model
for a particular task. Likewise, the lack of such completeness doesn’t imply
that the model is unsuitable. As shown above, an appropriate model of the
Dining Philosophers problem may be defined, without Turing completeness.
The lack of this in CCS is not necessarily a problem. It may even be an
advantage in some cases, where this lack of expressivity simplifies the formal
reasoning over the model.

One fairly obvious limitation, and one that is relevant when discussing
Turing completeness, is that there is no data in the model. The processes
discussed so far don’t explicitly communicate anything when they send or
receive signals. Instead, behaviour arises purely from synchronisation. It
is possible to extend CCS to represent this by adding the concept of value
passing between processes. A host of other process calculi have been based
on such a variant of CCS, and we will consider this in more detail as part of
section 2.3.

CCS models are also relatively static; while processes may evolve (e.g.
a.P may become P ) and the number of processes in the system may change
(e.g. a process may branch using parallel composition), the communication

5A finite axiomatisation can be defined, if the simultaneous presence of parallel com-
position and recursion is avoided [39].
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structure doesn’t. Notably, if a process, E knows about the channels x and
y initially, while F only knows about x (due to restriction on y), this status
can not change during the course of the various transitions inherent in the
system.

The effect of restriction is more generally known as scoping and occurs fre-
quently with reference to variables in programming languages. CCS doesn’t
allow dynamic changes to the scoping of channels. Instead, scoping is fixed
to the static arrangement provided by the initial system, prior to any transi-
tions. The addition of dynamic scoping, often referred to as mobility, is the
major contribution of the π calculus, a language based on CCS covered in
2.3.1.

To conclude, there is another limitation of CCS which is less to do with
a particular concept being absent from the language, instead being more
related to its central aspect: synchronisation. The problem here lies in the
compositionality of processes. While the structure of a CCS system remains
compositional, because the result of parallel composition is determined by
the behaviour of the composed processes together with the rules of the |
operator, this is not true of the synchronisation of multiple processes.

Consider the idea of broadcasting a signal to an arbitrary number of
processes. Ideally, a general broadcast agent should be defined which provides
this behaviour. In CCS, there are at least two possible ways of defining
semantics for the agent, but not one that provides a suitably compositional
solution. Perhaps the most obvious of these is simply to extend the familiar
synchronisation of two processes. An input and output pair can synchronize,
so why not just create multiple pairs, one for each receiving process? For
example, transmitting a signal to two processes can be written simply as

a1.a2.0 | a1.P | a2.Q (2.7)

where the process on the left (in bold) forms the semantics for the broadcast
agent and the processes, P and Q are the continuations of the input processes

This will work, but what happens when the broadcast agent needs to
transmit the signal to three processes?

a1.a2.a3.0 | a1.P | a2.Q | a3.R (2.8)

The semantics of the broadcast agent have to change. Simply composing
the third input will lead to one of the three being ignored by the original
definition of the broadcaster given above. So, simply enumerating multiple
synchronisation pairs is not sufficient to provide a compositional broadcast
agent.
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A second solution lies in recursion. If the problem with the previous
solution lies in the broadcasting agent doing too little (i.e. not transmitting
to all the possible receivers), then, by making it recurse, it will keep sending
the output to whoever will synchronize with it. Thus, the example for three
inputs above becomes

µX.o.X | o.P | o.Q | o.R (2.9)

which works, and will continue to do so if a further input process is parallel
composed.

But there is still a problem for much the same reasons as the first solution.
This works fine on this small scale, but what happens when this agent is
placed in the context of a larger system? Once the agent starts its cycle
of outputs, it won’t stop as there exists no base case for this recursion6.
An output on o will always be available (within the scope of any restriction
placed on that particular channel) and the broadcasting process can never
do anything else. The result is a constantly cycling process, which, in an
implementation of this model, would continue to consume resources.

The true solution to this problem is to enable some form of global syn-
chronisation. This requires a separate entity, disparate from the processes
involved in the communication, which can be used to co-ordinate the syn-
chronisation. In the next section, a branch of process calculi is considered
which provides just such a facility.

2.2 Timed Calculi

Initially, the use of the word ‘timed’, within the context of the calculi consid-
ered here, is a bit of a misnomer. The notion of ‘time’ is generally associated
with concrete real values, in units such as minutes and seconds. Real-time
process calculi, such as those described in [1, 4, 30, 31, 46, 62, 63], attempt to
model this. Instead, this section focuses on a series of discrete timed calculi
which focus on abstract time and the use of clocks for the primary purpose
of global synchronisation (as described above).

Hennessy’s Temporal Process Language (TPL) [24] extends the CCS lan-
guage discussed above with a single clock, akin to a hardware clock which
emits a signal at an arbitrary point in time. These signal emissions are con-
trolled by a concept known as maximal progress, which allows each process
to make as much progress as possible before the clock ticks. Formally, this

6A base case may be introduced using non-deterministic choice, but there is no guar-
antee when this will be invoked, if ever.
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means that all silent actions (τs) are performed before a σ action (which
represents the clock signal) occurs.

This is of little use unless the actions of the processes can actually depend
on the behaviour of the clock. The two are related via the addition of a
timeout operator. This takes the form

⌊E⌋σ(F ) (2.10)

where E and F are processes and σ is the clock. In short, F acts if E times
out on the clock, σ. This is similar to non-deterministic choice, in that only
one of the two processes will ever act and the behaviour of the other is lost.
Here, however, the choice is determined by the clock (and thus effectively by
the other processes, as it is their behaviour which controls when the clock
will tick).

With these additions, the problem of defining a suitable compositional
broadcast agent, as mentioned above, can be solved. Recall the second solu-
tion, which used recursion. Now, with the addition of an external entity (the
clock) and a way of relating it to the processes involved (timeouts), a base
case may be provided via recognition of the point when no more synchroni-
sations may occur. This can be added to the earlier recursive solution

µX.⌊o.X⌋σ(0) | o.P | o.Q | o.R (2.11)

by simply adding a timeout which stops the recursion. This works because
the synchronisations of the input processes with the output of the broad-
cast agent generate silent actions and thus invoke maximal progress. While
there is a choice between a silent action (due to the broadcasting agent syn-
chronizing with an input) and a clock tick, the silent action always takes
precedence and thus every possible synchronisation occurs. Once no more
synchronisations are possible, the clock is allowed to tick and the recursion
stops.

2.2.1 Extending TPL

The extensions to TPL considered here focus on expanding the scalability of
the language. As demonstrated above, TPL adequately provides for situa-
tions where an arbitrary number of processes must synchronize. But what
happens when a solution, like the one above, is integrated into a larger sys-
tem? With only one clock, further problems occur. The use of the clock in
one subsystem may conflict with its use in another, and there is no clock
available to co-ordinate the subsystems themselves.
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The Calculus for Synchrony and Asynchrony (CSA) [16] extends TPL
with the idea of multiple clocks, drawn from PMC7[3]. However, while having
multiple clocks allows the use of differing patterns of synchronisation, it
increases the number of clock ticks present within the system. With five
clocks, even the nil process has five possible transitions (as clocks idle over
nil).

CSA solves this to a limited extent by localising maximal progress to a
pre-defined scope for each clock. A more elegant solution is provided in the
Calculus for Synchrony and Encapsulation (CaSE) [50], which introduces a
clock hiding operator into the syntax. The effect of this is the introduction
of synchronous encapsulation, as hidden clocks emit τ actions (as opposed
to ticks) outside the operator’s scope. This can be used, in conjunction
with restriction, to produce a hierarchy of components. The actions of these
subsystems can be represented purely as silent actions, and, when combined
with the global form of maximal progress introduced by TPL and retained
in CaSE, integrated into the ‘synchronous cycle’ [50] of clocks at the level
above. CaSE is further discussed in 3.1, where it forms the basis for the
calculus of Typed Nomadic Time (TNT).

2.2.2 Advantages and Disadvantages of Timed Calculi

The main advantage of the timed calculi we have discussed here is that
they allow, via the introduction of global synchronisation, the construction
of systems on a larger scale than those that could be created purely with CCS.
With CaSE, components can be created which consist of multiple processes
and clocks. These can then be successfully integrated together to form new
components.

Global synchronisation allows the problem of defining a compositional
broadcast agent, cited earlier in 2.1.3, to be solved, but these timed calculi
still retain the other problems with CCS we mentioned there. Neither TPL,
PMC, CSA nor CaSE explicitly include data within the model. This is not
necessarily a disadvantage; it is possible to model data implicitly, via the
use of silent actions, and including data in the model complicates formal
reasoning and equivalence theories.

More importantly, these calculi all still retain a static structure. The
scope of restriction or clock hiding doesn’t change as the processes evolve.
This prevents these calculi from being used to model mobile systems where
these elements do change, although they are perfectly suited to modelling

7PMC also differs from TPL in its use of insistent actions; all must be performed before
a clock tick.
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static dataflow-oriented systems such as those in [48] and [49].
In contrast, the following section contains a discussion of calculi which,

while lacking the scalability of the timed languages just illustrated, can model
mobile systems.

2.3 Mobility

Within the field of algebraic process calculi, there are two clear ways in
which the dynamic nature of a system is modelled. The most well-known is
the form of mobility present within Milner’s π calculus which allows the scope
of a name to change as the system evolves. This concept can be thought of
in a similar way to the reference passing that occurs in most programming
languages; part of the program begins with no knowledge of an entity, and
later gains knowledge by obtaining a reference to it.

Models in the π calculus are not really mobile in the sense of something
moving from one place to another. This isn’t possible, as there is no real
notion of ‘place’ to begin with. However, the addition of this mechanism does
allow the modelling of dynamic systems, such as a mobile phone network [41],
and is sufficiently expressive as to allow it to encode Church’s λ calculus [40].

A more naturalistic form of mobility is found in calculi which allow entities
to migrate. One of the primary exponents of this is Cardelli and Gordon’s am-
bient calculus [13], which groups composed processes inside ambients. These
ambients can be moved up and down a nested hierarchy of such objects, or
destroyed. The calculus differs from those previously considered, in that it
lacks communication primitives. Surprisingly, the base syntax is sufficient
to allow communication to be encoded within them, and indeed the entire
asynchronous form of the π calculus can be represented.

The following two sections consider examples of both types of mobile
calculi in more detail.

2.3.1 Scope Mobility

The π Calculus

The π calculus follows on from Milner’s earlier work on CCS discussed in
2.1.1. Essentially, it is a value-passing form of CCS with a generalisation
from values and channels to simple pure names. Thus, channels can be
passed between processes, as well as values, which means that their scope
may change during execution.

To make this clearer, consider the syntax of the form of π calculus given
in [40]
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E,F ::= 0 | xy.E | x(y).E | (a)E | (E | F ) | !E (2.12)

which is a minimal version containing replication as opposed to recursion,
with a a channel name and x and y being defined below. Compare this with
the syntax given for CCS in Eqn. 2.1. The nil process, 0, is still present,
as is parallel composition and restriction (although in a new form, (a)E).
Non-deterministic choice is present in the original version of the π calculus
presented in [45], but is removed from the version given in [40] due to the
formulation of semantics used there. !E is the syntax for replication, which
replaces recursion in this particular variant of the calculus to give a simpler
theoretical treatment, while still doing much the same job.

The main distinction between the two lies in the remaining element of
the syntax: prefixing. In CCS, a more general syntax, α.E, where α ∈
N ∪ N ∪ {τ}, is used and includes input, output and silent actions. In
the syntax given above for the π calculus, the input (x(y)) and output (xy)
syntax are given separately, and the input prefix is binding8 like restriction.
x and y are both names, where ‘x [is] the subject and y the object ’ [40]. Silent
actions no longer appear in prefix form, but do occur as τ.E in some variants
of the π calculus.

The distinction between the π calculus and value-passing forms of CCS,
which also use this form of prefixing, lies in x and y being drawn from the
same set in the π calculus. In contrast, value-passing forms of CCS keep the
two sets distinct, so that the channel and value names do not intersect. This
change is what gives π calculus its power, as channels can now be used as
the object of an input or output. Thus,

x(y).yx.0 (2.13)

becomes perfectly valid.
This also has an effect on restriction. Recall that, in CCS, (a.0|a.0)\a

restricts the scope of a to just the two processes, a.0 and a.0, making a syn-
chronisation the only possible action which may be performed. Now consider
the following processes defined using the π calculus:

(a)(a(x).xa.0 | ay.0) | y(z).P (2.14)

where the scope of a is again restricted, this time to the two processes
a(x).xa.0 and ay.0. If these two processes synchronize, the system evolves
to:

8When an input is received on x, y is bound to the value of that input, which is then
substituted for y in the continuation of that process.
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(a)(ya.0 | 0) | y(z).P (2.15)

with x becoming bound to the channel name, y. This shows how the π
calculus allows channel names to be passed between processes, but it is the
next transition that is really interesting. ya.0 will pass the channel name, a,
to y(z).P , which is outside the scope of the restriction imposed on a. As a
result, the scope of a is extruded :

(a)(0 | 0 | P{a/z}) (2.16)

so as to include the process, P , in which a is now substituted for z. Further,
one of the structural congruence rules of the π calculus [40]:

(x)(P | Q) ≡ P | (x)Q if x not free in P (2.17)

may be used to perform scope intrusion, giving:

0 | 0 | (a)(P{a/z}) (2.18)

as the channel a no longer occurs in the other two processes. These changes
in scope are central to the concept of mobility within the π calculus. They
reflect the dynamic environment of the processes represented, and give the
calculus a greater expressivity.

Variants of the π Calculus

Multiple variants of the π calculus exist, including various evolutions of the
syntax and semantics. As noted above, replication is only introduced in the
version of the calculus given in [40], which also defines a reduction-based
semantics. The earlier tutorial papers [45] instead use recursion and a struc-
tured operational semantics, based on a labelled transition system.

The polyadic π calculus [42] is a more distinct variant. Essentially, this
involves a syntactic change to input and output, so that a tuple is used, as
opposed to the single names used in the monadic π calculus9. Having this
as a core part of the syntax provides advantages in representing abstractions
and giving a natural sort discipline10. However, it is also possible to simply
provide an encoding of this in the monadic variant.

Doing so is not simply a matter of transmitting each value in sequence;
the operation needs to respect the atomicity implicit in the use of multiple
names. Observe the following example from [42]:

9This is a term used to refer to the original π calculus in retrospect.
10Sorts are a way of applying typing to the π calculus, which will be covered further in

section 2.4 on typed calculi.
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x(yz) | xy1z1 | xy2z2 (2.19)

where the process on the left should receive either y1 and z1 or y2 and z2.
With the following semantics,

[[x(yz)]]
def
= x(y).x(z) (2.20)

[[xyz]]
def
= xy.xz (2.21)

the two sending processes can interfere with one another. y will become
bound to either y1 or y2 on the first synchronisation, which is fine, but z may
then receive whichever of these two remains instead of the second element in
the tuple. This happens because there is no link between the two synchro-
nisations. Thus, each subsequent transmission results in a new competition
between the two processes as to who actually synchronizes with the receiver.

The solution to this problem is to make use of a private channel. Before
transmitting any of the names that form part of tuple, the sending process
passes a reference to a new channel to the receiver. The receiver then uses
this channel to receive the contents of the tuple, rather than relying on an
existing channel, which may be prone to interference. Thus, the semantics
become:

[[x(yz)]]
def
= x(w).w(y).w(z) (2.22)

[[xyz]]
def
=(w)(xw.wy.wz) (2.23)

where w is the new private channel created to facilitate the process of trans-
mitting the tuple. This ability to encode the polyadic variant in the original
monadic calculus implies that the new syntax fails to yield any greater expres-
sivity, but this is not really the motivation behind this extension. Instead,
what this provides is a more natural way of transmitting information, which
makes modelling relatively complex systems easier.

The asynchronous π calculus [7, 27, 60] deliberately reduces the level
of expressivity in order to simplify reasoning and provide a better frame-
work for distributed implementations. The output prefix, xy.E is replaced
with xy.0, so that there is no continuation after an output. In the original
synchronous π calculus, the behaviour of the continuation, E, is blocked un-
til a synchronisation with a recipient can occur. This doesn’t occur in the
asynchronous variant, as there is no longer any behaviour dependent on this
output occurring.
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Synchrony can be emulated in the asynchronous polyadic π calculus, just
as synchronous messaging frameworks, such as TCP, can be implemented on
top of an asynchronous network. The receiver simply has to acknowledge
receipt of the message by replying to the sender. The following semantics
are given for the monadic prefixes in [9]:

[[cx.P ]]
def
=(r)(cxr | r.P ) (2.24)

[[cy.P ]]
def
= c(yr).(r | P ) (2.25)

where r is not free in P . The output is encoded as the transmission of a tuple
containing two names: x, the original name being sent, and r, a new channel
created to receive the acknowledgement from the recipient. This runs in
parallel with another process that awaits an input on r11 before continuing
with P . Thus, the original synchronous behaviour is emulated, as P will not
evolve until the receiver has obtained the private channel, r, and replied.

Other changes to the calculus are also commonly adopted to reduce its
expressivity, thus making more proofs feasible. These include:

• input localisation [36], whereby a link received from another process
can not be used for input. For example, a process a(x).P may not use
x as a channel upon which to receive input in P .

• uniform receptiveness [59], where the input end of a link occurs only
once syntactically and is replicated so as to be always available.

• input-guarded replication, which is not just restricted to uniform re-
ceptiveness variants, but is generally used as a more restricted form
of replication (so the replication operator becomes !a(x).P rather than
!P ).

The final variant of the π calculus considered here is the extension to
higher-order operations. The most obvious change to make in this direction
is to allow processes to be exchanged. Such a second-order form of the
calculus is given by the Calculus of Higher Order Communicating Systems
(CHOCS) [66], which actually predates the π calculus itself. This extended
CCS with mobility by allowing processes, rather than channel names, to be
transmitted.

The more general area of higher-order π calculus, and the theory behind
it, is covered in Sangiorgi’s thesis [58]. It defines an extension to the π

11r is a syntactic abbreviation for r() i.e. the input is an empty tuple.
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calculus, HOπ, which not only allows the transmission of names (first-order)
and processes (second-order), but also parameterised processes of arbitrarily
high order (ω-order). This is best illustrated by some examples, drawn from
[58]. In the simplest case, an ‘executor’ process can be defined, x(X).X,
which will receive and then execute an arbitrary process. Placing this in an
appropriate context,

xP.Q | x(X).X (2.26)

the process on the left, xP.Q, will transmit the process, P , to the execu-
tor before continuing as Q. Thus, following the synchronisation of the two
processes, this system evolves to become:

Q | P (2.27)

where the process P having being substituted for X.
A more complex example is given by considering Milner’s encoding of the

natural numbers [42]. A natural number, n, is encoded as a series of outputs
on y, the number of which is equal to n (represented as yn), followed by a
transmission on z to indicate zero and thus, the end of the number:

[[n]]
def
=(y, z)yn.z (2.28)

Using HOπ, the addition of these numbers can be encoded in a very simple
way. In the π calculus, summation is achieved via an indirect reference to the
two numbers, using channel names. In HOπ, the parameterised processes or
agents that represent the numbers can be used directly in the representation
of addition. Thus, actually adding the two numbers together becomes a sim-
ple matter of running the two concurrently, and linking them via a common
channel.

A Plus agent, which performs the addition of two numbers, can be defined
as follows:

Plus
def
=(X,Y )(y, z)((x)(X〈y, x〉 | x.Y 〈y, z〉)) (2.29)

where both X and Y are agents with two parameters, corresponding to y and
z respectively in the definition of [[n]] above. The operation of this agent is
best demonstrated by example. Assume X is two and Y is three, represented
in HOπ as:

X(y, z)
def
= y.y.z (2.30)

Y (y, z)
def
= y.y.y.z (2.31)
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and retaining the same representation used for [[n]] above. When X and Y
are passed to the Plus agent, X is instantiated with a new private channel,
x, in place of z in the above. Y is then prefixed with an input on this same
channel, so that the y outputs occurring in Y only execute after those in X.
This leads to the following sequence of transitions:

y
−→

y
−→

τ
−→

y
−→

y
−→

y
−→

z
−→ (2.32)

which is close to the sequence that occurs for the representation of five in
HOπ:

y
−→

y
−→

y
−→

y
−→

y
−→

z
−→ (2.33)

Formally, the two are weakly bisimilar. A bisimulation is a symmetric bi-
nary relation between two processes, which exists if each process can simulate
the behaviour of the other. R is such a relation iff, for all pairs of processes
(p, q) in R and all actions, α12:

1. P
α
→ P ′ =⇒ ∃Q′ such that Q

α
→ Q′ and (P ′, Q′) ∈ R

2. Q
α
→ Q′ =⇒ ∃P ′ such that P

α
→ P ′ and (P ′, Q′) ∈ R

For a weak bisimulation, τ transitions are effectively ignored. A series
of such transitions,

τ
→

τ
→

τ
→ . . . is abbreviated to

τ
⇒ and

τ
⇒

a
→

τ
⇒ is deemed

equivalent to
a
→. As the additional τ transition in the Plus-based derivation

is the only difference between the two, the two can be deemed equivalent
under the rules of weak bisimulation.

Returning to HOπ, the most interesting point about this calculus is not
that it provides the means to formulate abstractions of the type just demon-
strated, but that, in doing so, it adds no further expressivity. Indeed, San-
giorgi, in his thesis [58] demonstrates how a HOπ calculus can be represented
in the π calculus. Thus, just as with the polyadic variant, the benefit of using
HOπ comes not from increased expressivity, but from the additional ease it
provides in modelling certain scenarios.

The Join Calculus

The Join calculus [20] takes the asynchronous π calculus as its basis, and
focuses on providing a formalism better suited as the basis for a distributed
implementation.

12The bisimulation definition given here is more applicable to the static systems of
CCS. Although it holds for this simple example, a more detailed method of bisimulation is
required to handle the dynamic binding that occurs in the π calculus and its derivatives.
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Take the following example of a π calculus process given in [34]:

x(y).P | x(z).Q | xa (2.34)

where two processes are waiting to receive input on x. The problem with
implementing this in a distributed setting is that there is no concept of loca-
tion with the π calculus. Each of the two receiving processes or receptors13

may be located at an arbitrary distance both from each other and from the
transmitter, xa. As a result, a distributed consensus problem arises as to
which of the two receptors will receive the transmission.

The join calculus provides a solution to this problem by altering the
syntax of the π calculus. The asynchronous variant of the syntax given in
Eqn. 2.12 becomes:

P,Q ::= 0 | def D in P | (P | Q) | x〈ṽ〉 (2.35)

D,E ::= J ⊲ P | D ∧ E | T (2.36)

J, J ′ ::= x〈ṽ〉 | (J | J ′) (2.37)

with T being the empty definition and a clear focus on linking the receptors
in D to the emissions occurring in P (both represented by the same syntax,
x〈ṽ〉). The use of this is most clearly demonstrated by example:

def (x〈y〉 ⊲ P ) ∧ (x〈z〉 ⊲ Q) in x〈a〉 (2.38)

which has essentially the same behaviour as the π calculus example presented
earlier. x〈y〉⊲ P receives an input, y, on x and then continues as P . x〈y〉 is
said to guard P , and multiple such guards may be applied to a single such
process. Multiple such receptors may be defined via use of the ∧ operator.

It is impossible to provide an exact equivalent to the earlier series of
π calculus processes, as the changes in the join calculus now prevent such
scenarios from being created. Instead, the equivalent of this join calculus
example in the π calculus is:

(x)(!(x(y).P | x(z).Q) | xa) (2.39)

where the scope of x is restricted to the def expression and the inputs are
replicated, so as to be always available. Thus, a channel x is always localized
to a particular set of emitters and receptors.

13The join calculus uses an analogy with chemistry to describe its behaviour, based on
the CHemical Abstract Machine (CHAM) [6].

26



Clearly, the join calculus, as a reformulation of the asynchronous π cal-
culus with a new syntax, can not be used to express anything which can’t be
expressed in the π calculus. However, it has a lot of advantages in endowing
the calculus with distributive properties at the syntactic level.14

Advantages and Disadvantages of the π Calculus

The π calculus is a powerful formalism drawn from a minimal abstract syntax.
As noted at the start of this section, it is capable of encoding the λ calculus
and so it follows that it is also capable of simulating any recursive function.

The problem is that this makes it a little too powerful in some cases. From
[61], we can see how much more difficult the additional power given by the
π calculus makes proving termination. In contrast, a sufficiently restricted
form of CCS provides a trivial proof. In the same paper, Sangiorgi also
touches on something which seems common within the literature [20, 64, 69,
2]; while the expressiveness of the π calculus is interesting, it is necessary
to restrict it in order to actually have something which is generally useful
for reasoning over or using as the basis for a full programming language.
Specifically, to prove termination for the π calculus, it is necessary to employ
the asynchronous variant with uniform receptiveness and the input-guarded
replication operator.

Another problem with the π calculus is that it carries with it a trait from
CCS. Namely, it can’t be used to model synchronisation with an arbitrary
number of processes in a compositional way. This was considered earlier in
2.1.3 for CCS, and solved in 2.2 using the additions to the calculus given
by TPL. While the π calculus has a notion of mobility and is thus more
expressive than CCS, it still lacks an external entity with which to co-ordinate
such a transaction.

A common motif reoccurs here, that was touched on earlier in the in-
troduction to this review; even though something has a certain level of ex-
pressivity, it doesn’t follow that it is the most appropriate mechanism for
modelling a particular phenomenon. This also holds for the distributed cal-
culi considered in 2.3.2. The π calculus may already model mobility, but
these calculi do so in a different way, which may prove more suitable in a
particular context.

14Such changes have also been made using the restrictions imposed by an appropriate
type system [59].
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2.3.2 Distribution and Migration

Allowing the scope of a name to change during execution is one possible way
of modelling dynamic behaviour, but it isn’t the only way. The concept of
mobility naively implies the physical movement of processes, but, as shown
above, this is not what actually happens in the π calculus. To do so requires
some notion of distribution; this can be provided by localities, a term used
to refer generally to a higher-level form of grouping, above that of processes.
This concept has been applied to various calculi, in different forms, in order
to model physical sites [69], administrative or security domains [13, 68] and
biological cells [10], but can theoretically be applied in any context where the
grouping of processes is useful. Localities can be used simply for observation
or as a means to further control the behaviour of the processes encapsulated
within them. They are generally named, so as to provide a communication
target or a known destination for a migrating entity.

Originally, localities were used to distinguish between processes in order
to provide further equivalence theories. Take the following simple CCS-based
example process:

Spec
def
= in.τ.out.Spec (2.40)

which forms the specification for the behaviour of a system that receives an
input, processes it and then returns the output. The actual implementation
may differ from the specification by instead involving two processes:

Receiver
def
= in.a.Receiver (2.41)

Sender
def
= a.τ.out.Sender (2.42)

which communicate over another channel, a. If these two processes are run
concurrently:

(Receiver | Sender) \ a (2.43)

with the scope of a restricted, they are weakly bisimilar (see 2.3.1) to one
another. The specification performs the following derivations:

in
−→

τ
−→

out
−→ (2.44)

prior to recursing and becoming Spec again, whereas the implementation
produces:

in
−→

τ
−→

τ
−→

out
−→ (2.45)
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Table 2.1: LCCS Dynamic SOS Rules

Act1
−

a.E
a
−→
l

l :: E
for any l ∈ Loc Act2

E
a
−→
u

E ′

l :: E
a
−→
lu

l :: E ′
Act3

−

τ.E
τ
→ E

with the extra τ transition caused by the synchronisation on a. As weak
bisimulation effectively ignores τ actions, the two are judged to be equivalent.
If the specification was to include a further τ action, for an arbitrary reason,
prior to the out, then the two would also be strongly bisimilar. To summarise,
the difference between the two sets of derivations is negligible, according to
the bisimulation, yet the actual difference between the specification and its
implementation is fairly significant. The specification effectively requests a
monolithic solution, but weak bisimulation allows the final implementation
to be distributed over multiple processes.

In most situations, this is beneficial. It means that the specification can
be met by a concurrent system, composed of multiple processes running in
parallel, superfluous τ transitions aside. When a distinction between the
number of processes used is required, a finer equivalence is needed. Location
bisimulation [8] provides exactly that, by assigning locations to processes and
using them as part of the relation between processes.

Essentially, this means that each transition is annotated with a location
name. A variant of CCS, LCCS, adds an additional piece of syntax, l ::
E to signify that a process E is located at l. This association is made
within the operational semantics, of which there are two variants. The static
approach allocates locations initially, while the dynamic method generates a
new location for each non-silent transition. Here, the focus is on the latter,
shown in Table 2.1, which essentially gives each process a causal path, by
explicitly representing the number of transitions that have been performed.

The semantics, as with those for CaSE and TNT given in chapter 3, are
based on a labelled transition system. The possible behaviour of a process is
defined as a series of labelled transitions from one process to another, which
are later used as the basis for the bisimulation-based equivalence theories
shown earlier. The rules presented here are only a subset of those for LCCS,
being those that are relevant to the use of locations. The remaining rules for
summation, parallel composition and restriction are as for CCS itself, with
the additional inclusion of the location on the transition. These are discussed
informally in section 2.1.1, and also appear as part of the CaSE semantics.
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The rule, Act1, handles the initial assignment of a location for any action,
a.E, where a ∈ N ∪N (i.e. a 6= τ) and Loc is simply a set of location names.
The rule states that the process may perform a transition to the process
l :: E. The transition itself is annotated with both the action a and the new
location, l, which causes the locations to appear in the sequence of transitions
for each process (and, thus, the equivalence theory).

Act2 is a continuation of Act1, which handles processes that have already
been assigned a location. If the process itself, E, can perform some action, a,
with the location, u, to become E ′, then so can the located version of E. The
interesting part of this rule is how the location is used in the new transition.
The u from the new transition is concatenated with the l from the current
location, so the transition depicts the specific route the process has taken
through each location. The final rule, Act3, simply handles silent actions,
which are unaltered from their behaviour in CCS, and have no association
with locations.

How this actually works in practice is best shown by reconsidering the
earlier CCS example. Recall the specification defined in 2.40. This is a
process with essentially three actions, in, τ and out, which may be localised
via use of the LCCS semantics given above. As the process begins its life in
an unlocated form, Act1 is applied to assign it a location:

in.τ.out.Spec
in
−→
l

l :: τ.out.Spec (2.46)

where l is an arbitrary location name15. The evolution of the resulting pro-
cess, l :: τ.out.Spec utilises both Act2 and Act3. Act2 provides the appropri-
ate transition for such a located process, but its behaviour is based on that
of the unlocated process, which in this case is τ.out.Spec. Thus, Act3 is used
to yield:

τ.out.Spec
τ
→ out.Spec (2.47)

which is then applied as the precondition for Act2 to give:

l :: τ.out.Spec
τ
−→
l

l :: out.Spec (2.48)

As u is effectively the empty string, ǫ, in this case, due to the τ transition
being unlocated, the result of the concatenation, ul, is simply l.

15The name is arbitrary in the sense that it doesn’t matter what the name is, but, as
the later discussion of bisimulation shows, the location names must be assigned in some
kind of regular fashion to facilitate comparison.
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The final derivation again combines the use of Act2 with another rule.
This time, the action is a member of N , so Act1 is used to give the derivation
of the unlocated variant, out.Spec:

out.Spec
out
−−→

k
k :: Spec (2.49)

where k is again an arbitrary location assigned to the new visible action.
Merging this with the main process using Act2 gives:

l :: out.Spec
out
−−→
lk

l :: k :: Spec (2.50)

resulting in a final process with a causal path of two locations, l and k.
But how does this help distinguish the specification from its dual process

implementation shown previously? First, it is necessary to extend the defi-
nition of bisimulation given in 2.3.1 to incorporate the localised transitions
of LCCS. Recall that a bisimulation is a symmetric binary relation between
two processes, which exists if each process can simulate the behaviour of the
other. R ⊆ LCCS × LCCS is a dynamic location bisimulation relation iff,
∀(p, q) ∈ R ∧ a ∈ N ∪N ∧ u ∈ Loc:

1. P
a
−→
u

P ′ =⇒ ∃Q′ such that Q
a
−→
u

Q′ and (P ′, Q′) ∈ R

2. Q
a
−→
u

Q′ =⇒ ∃P ′ such that P
a
−→
u

P ′ and (P ′, Q′) ∈ R

3. P
τ
→ P ′ =⇒ ∃Q′ such that Q

τ
→ Q′ and (P ′, Q′) ∈ R

4. Q
τ
→ Q′ =⇒ ∃P ′ such that P

τ
→ P ′ and (P ′, Q′) ∈ R

This is the strong variant that observes τ transitions. A localised version of
weak bisimulation merely requires satisfying the first two conditions. As the
earlier comparison between the two processes was made using weak bisimu-
lation, it is this weak variant of dynamic location bisimulation that will be
used here.

The implementation with two processes, shown in 2.41, had the following
transitions using plain CCS:

in
−→

τ
−→

τ
−→

out
−→ (2.51)

whereas the specification exhibits the following behaviour in LCCS:

in
−→
l

τ
−→
l

τ
−→
l

out
−−→
lk

(2.52)

31



To compare the two, it is necessary to give a similar localised treatment to
the transitions for the implementation. Clearly, the τ transitions will be
relatively unaffected, and, under a weak form of bisimulation, are irrelevant
anyway. Essentially, the two sequences being compared are:

in
−→
l

out
−−→
lk

(Specification (Localised))

in
−→

out
−→ (Implementation)

when the τ transitions are ignored. To localise the latter of these, it is neces-
sary to look back to the original two processes from which these transitions

are derived. The first,
in
−→, arises from the Receiver as follows:

in.a.Receiver
in
→ a.Receiver (2.53)

which, when localised, becomes:

in.a.Receiver
in
−→
l

l :: a.Receiver (2.54)

So, the first of the two transitions should be
in
−→
l

when LCCS is used.

However, the use of a makes things a little complicated. It appears in
both the Receiver (as just shown) and the Sender as a visible action (a and
a respectively), but these combine to become a τ action when the two are
run in parallel. The above makes it appear that the Receiver will evolve
to l :: k :: Receiver, by assigning a further location to a, but this doesn’t
match with the higher-level behaviour of the composed processes. Thus, to
make assigning locations easier, it is better to look instead at the sequences
of transitions from each process, rather than their explicit definitions:

in
−→

τ
−→ (Receiver)

τ
−→

τ
−→

out
−→ (Sender)

where the τ transition arising from the synchronisation is given for both.
From this, it is a simple matter of assigning a location to each observable
action:

in
−→
l

τ
−→ (Localised Receiver)

τ
−→

τ
−→

out
−−→

l
(Localised Sender)
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and merging the two to give a localised version of both the specification and
its implementation:

in
−→
l

out
−−→
lk

(Specification (Localised))

in
−→
l

out
−−→

l
(Implementation (Localised))

which illustrates a clear difference between the two.
For the first transition, the two can match each other, as both are capable

of performing
in
−→
l

. However, the relation breaks down on the second transition

which compares
out
−−→
lk

with
out
−−→

l
. Under a normal weak bisimulation, these

two transitions would be judged equivalent, as only the action is available
for comparison; both perform an out. However, a localised bisimulation
requires the locations to also match, which fails here. The specification has a
longer causal path, as its single process has performed two visible actions. In
contrast, the two processes involved in the implementation have performed
one action each, resulting in two separate paths with a length of one.

This shows that localities can be used to provide a stronger equivalence
theory; a dynamic location bisimulation can distinguish more processes than
a standard bisimulation. As stated earlier, localities are now more commonly
used in calculi which exhibit mobility in the form of migration, where they
are used to group arbitrary numbers of processes. The locality gives the
grouping a context, which may change during execution of the system, via
the movement of the locality or its constituent processes. What follows is a
further examination of such distributed calculi, including those which have
arisen from existing non-distributed formalisms, such as the Join calculus.

The Distributed Join Calculus

By adding localities, [21] defines a distributed variant of the Join calculus
shown in 2.3.1. The extended syntax is as follows:

P,Q ::= 0 | def D in P | (P | Q) | x〈ṽ〉 | go〈b, κ〉 (2.55)

D,E ::= J ⊲ P | D ∧ E | T | a[D : P ] (2.56)

J, J ′ ::= x〈ṽ〉 | (J | J ′) (2.57)

with the additional syntax of a[D : P ] representing input channels located at
a, the name of the locality. P is used to ‘initialise’ the locality. The names
are globally scoped and unique to a particular definition, so:
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def a[D : P ] ∧ a[D′ : Q] ⊲ R in S (2.58)

is disallowed. The syntax allows localities to be nested to form a hierarchical
structure, with each node in the tree corresponding to a different location.
All receptors for a channel must occur in the same location. The following
is disallowed,

def a[x〈y〉 ⊲ P : S] ∧ b[x〈z〉 ⊲ Q : R] in T (2.59)

as one receptor for x, P , is defined in location a and the other in location b.
Instead,

def a[x〈y〉 ⊲ P ∧ x〈z〉 ⊲ Q : R] in T (2.60)

may be used, where both P and Q are in location a.
Migration may occur using the new process construct, go〈b, κ〉. Rather

than the process itself migrating, this operator causes the surrounding loca-
tion to migrate and become an immediate sub-location of b. Upon completion
of the migration, an empty message is emitted on κ. This allows other pro-
cesses to block until the migration is complete, by waiting for receipt of this
completion message. For example,

def a[D : (P | go〈b, κ〉)] in S | def b[E : Q]in T (2.61)

reduces to:

def b[E : Q | (def a[D : (P | k〈〉)] in S)]in T (2.62)

when go〈b, κ〉 is expanded, with a now a sub-location of b.
The distributed join calculus is an interesting example of how an existing

calculus (the π calculus in this case) can be both adapted to suit a different
purpose or remove perceived deficiencies (as shown in 2.3.1) and then later
extended to incorporate mobility via distribution, via the simple addition of
localities and a migration primitive. The advantage of this is that the new
calculus can build on the established theory of the original calculus, instead
of having to start from scratch. This differs from the approach taken by
the ambient calculus, which instead begins again from first principles, in an
attempt to formalise this more spatial form of mobility in a minimal fashion.

The Ambient Calculus

The ambients within the ambient calculus [13] are a form of locality. Each
ambient can contain processes and other ambients, allowing a nested struc-
ture of ambients to be formed. This topology is dynamic; new ambients may

34



Figure 2.4: Spatial diagram of m[in n.out n.P ] | n[]

be created and existing ones moved or destroyed during execution. Within
the formal syntax of the calculus,

E,F ::= 0 | M.E | (νn)E | (E | F ) | n[E] | !E (2.63)

the ambients are represented by the term n[E], where n is an ambient name.
In comparing this with the syntax given for CCS in Eqn. 2.1 and that of the
π calculus from Eqn. 2.12, some apparent similarities can be seen, especially
with regard to the latter. The same nil process, 0, is present, as is parallel
composition and replication. (νn)E looks similar to restriction16. Continuing
on this presumption, M.E may be considered to be the prefixing already seen
in CCS and the π calculus. However, the syntax for M is

M ::= in n | out n | open n (2.64)

which is quite different from that of action prefixing. The ambient calculus
has no concept of channels; the only names present refer to ambients (so
(νn)E restricts these). What M provides is a set of mobility primitives,
known as capabilities. Processes emit these in order to alter the structuring
of the ambients, and thus perform the physical migration of ambients and
the processes within them.

Perhaps the most confusing aspect of capabilities is that they are emitted
by the process, but it is the ambient that actually moves. For example, if
process P is defined as in n.0, then performing this action has the effect of
moving the ambient in which P resides inside n, rather than just P . Likewise,
out n is the converse and moves the surrounding ambient outside n.

Such behaviour is best illustrated by an example. Suppose the process,
in n.out n.P begins its life in the ambient m (Fig. 2.4). Performing the first
action, in n, moves its surrounding ambient, m, inside n (Fig. 2.5). The
converse, out n, then moves m back outside n, resulting in a return to the
original ambient structure (Fig. 2.6), but with the process having evolved
into P .

16This is the syntax used in versions of the π calculus later than [40].
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Figure 2.5: Spatial diagram of n[m[out n.P ]]

Figure 2.6: Spatial diagram of m[P ] | n[]

open n is quite different. It alters the structure, just as in and out do,
but rather than moving ambients, it destroys them. It is also applied to a
child ambient rather than to the surrounding ambient, so open m.P | m[Q]
(as in [13]) reduces to P | Q.

There are also issues with regard to the applicability of capabilities and
the use of the names. A capability may only cause movement to occur when
at least one applicable ambient is available. As such, movement is heavily
dependent on context, and specifically the availability of an appropriately
named ambient. Applicability is dependent upon the capability involved:

• For in m, there must be a sibling of the surrounding ambient named
m.

• For out m, the parent of the surrounding ambient must be named m.

• For open m, there must be a child of the surrounding ambient named
m.

All three capabilities are non-deterministic. The same ambient name may
occur more than once, and each occurrence is regarded as being distinct. As
a result, the reduction of a capability includes a choice if there is more than
one applicable ambient present. For example, open m.P | m[Q] | m[R] has
two possible derivations,

1. open m.P | m[Q] | m[R] → P | Q | m[R]

2. open m.P | m[Q] | m[R] → P | m[Q] | R

The issue of non-determinism illustrates the behaviour that occurs when
there is more than one applicable ambient. What about when there are none?
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The process stalls, and can not move on until such an ambient becomes
available. This is akin to the situation in channel-based calculi, such as CCS
or the π calculus, where a name is restricted, but the appropriate co-name
is not available to provide synchronisation. For example,

(a.P )\a (2.65)

may never progress to become P as there is no a for a to synchronize with.
This behaviour is particularly relevant with respect to out m, where the sole
use of the name is to stop the surrounding ambient leaving its parent if the
names don’t match.

The restriction of ambient names, via (νn)E, combined with mobility
means that scope extrusion is also present in the calculus. Just as the trans-
mission of a name outside its scope causes extrusion in the π calculus, the
restriction of ambient names may float outward as necessary. Scope intru-
sion is also possible in both calculi, as demonstrated by the presence of the
structural congruence rule,

(νn)(P | Q) ≡ P | (νn)Q if n 6∈ fn(P ) (Struct Res Par)

which allows the restriction of n to be removed from P if the name doesn’t
occur free within its body.

Variants of the Ambient Calculus

A general problem within concurrency is the possibility of interference. This
was touched on briefly in the introduction to this review, where the value of
x differed due to a race condition. In the ambient calculus, redex interference
[33] is an issue, and is related to the non-determinism mentioned above.

Take the example process from [33].

n[in m.P ] | m[Q] | m[R] (2.66)

It is unclear what the environment of P will be, following the reduction of
the capability, in m. There are two alternatives,

1. n[in m.P ] | m[Q] | m[R] → m[n[P ] | Q] | m[R]

2. n[in m.P ] | m[Q] | m[R] → m[Q] | m[n[P ] | [R]]

resulting from the two redexes formed between n[in m.P ] and m[Q], and
n[in m.P ] and m[R]. If one contracts, resulting in a reduction, the other is
no longer possible. However, in this case, all three processes, P , Q and R,
can still interact following either reduction.
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In another example from the same paper,

open n.P | open n.Q | n[R] (2.67)

again with two possible interactions

1. open n.P | open n.Q | n[R] → P | open n.Q | R

2. open n.P | open n.Q | n[R] → open n.P | Q | R

the resulting process includes a process, either open n.Q or open n.P , which
is stuck until such a time as another ambient named n appears as a parent.
This may never occur. These kinds of interference, referred to in [33] as plain
interferences, may occur in other calculi. The equivalent in the π calculus
would be:

xz.P | x(y).Q | x(y).R (2.68)

where again a reduction will occur between one of the two:

1. xz.P | x(y).Q | x(y).R → P | Q{z/y} | x(y).R

2. xz.P | x(y).Q | x(y).R → P | x(y).Q | R{z/y}

and the remaining process, either x(y).Q or x(y).R, will be blocked.
Another more serious form of interference may occur in the ambient cal-

culus, due to the provision of differing interactions (in m, out m and open m).
These grave interferences occur when an ambient is involved in two reduc-
tions occurring as the result of different types of capability. Take the example
process,

open n.0 | n[in m.P ] | m[Q] (2.69)

in which two reductions can occur that are logically different. While the
interferences described above are a representation of the kind of race condi-
tions and non-determinism that would be expected in any concurrent model,
for example, to represent competition for resources, grave interferences are
usually unexpected and typically represent errors in the model. This process
may perform two radically different reductions,

1. open n.0 | n[in m.P ] | m[Q] → 0 | in m.P | m[Q]

2. open n.0 | n[in m.P ] | m[Q] → open n.0 | m[n[P ] | Q]
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where either n is destroyed, thus preventing the latter movement of P in to
m as it has no surrounding ambient, or n moves inside m and is no longer
available to be destroyed by open n.0. Clearly, only one of these reductions
is likely to be intentional.

Levi and Sangiorgi’s calculus of Mobile Safe Ambients [32, 33] presents
a solution to this. It introduces a notion of co-capabilities, which enforce a
pairing of mobility primitives before a reduction can be made. The result of
this is that the ambient being entered, exited or opened is aware of what is
taking place, and may react accordingly.

With these co-capabilities in place, the reduction rules for the calculus
run as follows:

n[in m.P1 | P2] | m[in m.Q1 | Q2] → m[n[P1 | P2] | Q1 | Q2] (SafeIn)

m[n[out m.P1 | P2] | out m.Q2 | Q2] → n[P1 | P2] | m[Q1 | Q2] (SafeOut)

open n.P | n[open n.Q1 | Q2] → P | Q1 | Q2 (SafeOpen)

where, in each case, the capability must be able to synchronize with a co-
capability in the relevant ambient for the reduction to take place. For exam-
ple, in SafeIn, in m.P1 must pair up with in m.Q1 in the ambient m. As a
result, Q1 can react appropriately to the change in structure, based on the
fact that it knows the movement has occurred.

The changes in the calculus of safe ambients, though simple, have a dra-
matic effect on the ability to construct an algebraic theory for the calculus
and prove properties, especially when coupled with an appropriate type sys-
tem17. Essentially, they represent a move from asynchronous to synchronous
mobility primitives. The calculus of controlled ambients [65] restricts be-
haviour further, by requiring that a co-capability must appear in both the
source and the destination. Thus, an in m capability requires permission
both to leave its current location and to enter the destination ambient. This
is useful for the specific application of the calculus, controlling resources, but
is excessive in most circumstances.

A further variant of the ambient calculus is the calculus of boxed ambients
[9]. This removes the open capability altogether, replacing it with a form of
directed communication inspired by [68]. Processes remain within their initial
ambient permanently (hence the term ‘boxed’) and only the structure of the
ambient topology changes via the in and out capabilities. Messages may be
sent locally, upwards or downwards, but not to siblings.

An example process from [9] is:

17In this case, the type system ensures single-threadedness, where only one process
within an ambient may exercise a capability.
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n[(x)pP | p[〈M〉 | (x)Q | q[〈N〉↑]]] (2.70)

where n, p and q are ambients, (x) is an input and 〈M〉 and 〈N〉 represent
outputs. (x)Q may synchronize with either 〈M〉 locally or the upward com-
munication from 〈N〉. (x)pP must synchronize with 〈M〉, as the only output
in p.

The ideas behind the boxed ambients calculus result in a formalism which
is more suited to communication-focused modelling, where the destruction
of locations would be unnatural. Both it and the original ambient calculus
have their own particular niche, being suited to particular applications. In
contrast, the latter is clearly more suited to situations where the removal
of a locality corresponds to a similar event in the real-world situation being
modelled.

Advantages and Disadvantages of the Ambient Calculus

The most interesting aspect of the ambient calculus is that, while it includes
no communication primitives, it can encode the asynchronous π calculus (see
2.3.1). This seems to imply that it is possible to model mobility in a more
natural way without losing much of the expressivity of the π calculus. On
consideration , this seems a little less surprising as ambient names exhibit
the same scope extrusion seen with channel names in the π calculus. With
this in mind, it is not too difficult to see that ambient names could be used to
mimic channel names, with synchronisation being emulated by two processes
performing some kind of interaction within the same ambient.

However, the representation of synchronisation illustrated in [13] seems
to suggest that the ambient calculus may still have problems dealing with the
kind of global synchronisation needed for the compositional broadcast agent
considered in 2.1.3. The operation is performed by destroying and recreating
ambients, as a signal to the other process involved in the synchronisation.
Extending this would seem to require using more ambients, which again
leads to the problem of enumerating the number of entities who wish to
synchronize. As before, this is possible but not compositional; every time
synchronisation is performed with a different number of agents, the semantics
of the process must be recreated.

Thus, the ambient calculus and the π calculus have more in common than
is initially apparent, and the choice between the two seems to be largely based
on the most natural formalism for a particular task.
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P Systems

While providing a way of modelling concurrent spatially-oriented systems,
P Systems [51] arise from the area of formal language theory and re-writing
rules rather than process calculi. They are considered here, as there exist
a number of similarities between them and, for example, the ambient cal-
culus both in providing a distributed model of computation and in finding
applications in the area of biological modelling.

A P system or transition super-cell system [51] of degree n, where n ≥ 1
is represented as:

Π = (V, µ,M1, . . . ,Mn, (R1, ρ1), . . . , (Rn, ρn), i0) (2.71)

where:

• V is an alphabet of objects.

• µ is the membrane structure, containing n membranes.

• Mi, where 1 ≤ i ≤ n, is a multiset of objects from V which are con-
tained in membrane i.

• Ri, where 1 ≤ i ≤ n is an evolution rule associated with one of the
membranes, i. The corresponding ρi is a partial-order relation which
determines the priority of the rule. The rules are rewriting rules of the
form a → v, which causes a to be replaced by v.

• i0 is a number between 1 and n which specifies the output membrane
where the result of the computation should be found.

Any of the multisets, rules or priority relations may be empty. Evolution oc-
curs in parallel, in a synchronous fashion involving all membranes (referred
to as maximal parallelism). A universal clock is assumed to exist, which
breaks the evolution of the system into cycles. Objects may move between
membranes and membranes may be broken, causing their objects to flood
into the membrane above and their rules to disappear. Such behaviour has
echoes of the ambient calculus described in 2.3.2, where ambients may be
destroyed by the open primitive and processes may move around the ambi-
ent hierarchy (but only within an ambient). The notion of synchronous clock
cycles also recalls the discrete timed calculi of 2.2, where evolution can also
be bounded by clock cycles in a synchronous fashion. An interesting distinc-
tion is commonly made in P systems; the outer membrane or skin membrane
is assumed to be special. For example, at least in a biological context, the
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Figure 2.7: Example P System

system is assumed to terminate if the outer membrane is destroyed (biolog-
ically, the external membrane has been broken and thus the organism falls
apart).

Consider the following example P system (Fig. 2.7),

Π1 = (V, µ,M1,M2,M3,M4, (R1, ρ1), (R2, ρ2), (R3, ρ3), (R4, ρ4), 4)

V = {a, b, b′, c, f}

µ = [1[2[3]3[4]4]2]1

M1 = ∅, R1 = ∅, ρ1 = ∅

M2 = ∅, R2 = {b′ → b, b → b(c, in4), r1 : ff → af, r2 : f → aδ}, ρ2 = {r1 > r2}

M3 = {af}, R3 = {a → ab′, a → b′δ, f → ff}, ρ3 = ∅

M4 = ∅, R4 = ∅, ρ4 = ∅

where the only membrane that initially contains any objects is M3. In M3

are two objects, a and f . f only matches one rule, f → ff , which causes
the number of fs to double on each evolution. For a, there are two rules and
one is chosen non-deterministically. If the first, a → ab′, is applied, then an
additional object b′ appears, and the rule may be applied again as an a is
still present. If a → ab′ and f → ff are applied for n steps, then n instances
of b′ and 2n occurrences of f are present.

If the second a rule a → b′δ, is applied, the δ causes the membrane, M3,
to be dissolved. At this point, there will be one extra b′ and one extra f
resulting from the application of this rule and f → ff , respectively, and no

42



a. This changes the configuration of the system to become:

µ = [1[2[4]4]2]1

M1 = ∅, R1 = ∅, ρ1 = ∅

M2 = {b′n+1, f 2n+1}

R2 = {b′ → b, b → b(c, in4), r1 : ff → af, r2 : f → aδ}, ρ2 = {r1 > r2}

M4 = ∅, R4 = ∅, ρ4 = ∅

The three rules that were present in M3 are lost, while the objects float into
the membrane above, M2. In this configuration, n represents the number of
times the pair of rules a → ab′ and f → ff were applied prior to this, and
is greater than or equal to zero.

In M2, a priority relation exists that forces ff → af to be given prece-
dence over f → aδ. As a result, whenever it is possible to apply ff → af
(i.e. there are two f objects), it will be applied instead of f → aδ. The
other two rules manipulate the b′ objects. First, they are all converted in to
b objects. This will always occur, as there are at least two f objects in M2

to begin with, which means ff → af will be applied rather than f → aδ
which destroys M2. Each time ff → af is applied, the number of f objects
halves.

The remaining rule, b → b(c, in4), will evolve once for each occurrence of
ff , of which there are n. M2 contains n + 1 b objects, all converted from
the b′ objects that were in M3. As long as there is an even number of f
objects, the two rules b → b(c, in4) and ff → af will be applied, halving the
number of f objects and creating n + 1 c objects in M4 (via (c, in4)), while
the number of b objects remains the same.

When only one f object is left, f → aδ will be applied, resulting in M2

being destroyed and the following configuration:

µ = [1[4]4]1

M1 = {a2n+1, bn+1}, R1 = ∅, ρ1 = ∅

M4 = {c(n+1)2}, R4 = ∅, ρ4 = ∅

No further evolution is possible, as there are no more rules. c(n+1)2 is the
final output, as M4 is the output membrane.

Further variants of P systems exist. Tissue P systems use a graph-based
structure rather than the tree shown here, while population P systems also
incorporate an environment. At present, the main flaw with modelling con-
current systems using this formalism is that the underlying theory is not as
advanced as for those of process calculi, such as the π calculus. So far, P
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systems research has focused on their power of expressivity, and their appli-
cation within the field of biological modelling. In the latter, they provide a
much more natural perspective than the channel-based operations of the π
calculus, and this is something that will be considered further in section 2.5.

Bigraphs

Bigraphs [29, 44] are an attempt at providing a unifying framework, able
to represent both spatial relationships (locality) in the style of the ambient
calculus (see 2.3.2) and link-based-relationships (connectivity) seen in the
π calculus (see 2.3.1). Their particular application area is within pervasive
computing, where a mixture of both concepts is needed to represent both
movement through space and the change in relationships between agents.

The nodes in a bigraph support a dual structure, hence the name. On
one level, there are nodes nested within nodes, representing locality. This is
called the place graph. These nodes have ports which are connected via links
to form a link graph. Each node has a control with an arity that defines the
number of ports. The two graphs share nodes, but are otherwise independent.
Nesting can only occur in nodes with a non-atomic control. These can also
be active or passive. The former allows reactions to occur within the node.
Holes may occur in bigraphs, where other bigraphs can appear.

Within this model, it is possible to encode both the π calculus and the
ambient calculus. Take the following rule from the asynchronous π calculus
without summation,

xy | x(z).P → P{y/z} (2.72)

which represents synchronisation. In [29], Milner encodes this as a bigraph
with two controls, send and get, both of which have an arity of two. To repre-
sent the fact that the output prefix has no continuation in the asynchronous
π calculus, send is declared atomic. get is non-atomic but inactive.

The node get includes a nested hole with the port z. This represents the
continuation P , with z being the name bound on input. The port z is linked
from the hole to get itself. send has two ports: x, which is also connected to
get, and y. With these concepts in place, the reaction may be represented
as:

sendxy | getx(z)� → x | y/(z)� (2.73)

the send node disappearing afterwards, leaving y connected to z and x un-
used.

Similarly, [29] shows how the in capability from the ambient calculus:
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n[in m.P1 | P2] | m[Q] → m[n[P1 | P2] | Q] (2.74)

may be encoded using two controls, amb and in, both with an arity of one.
The two ambients involved are represented by instances of amb, while in is
an atomic control representing the process that emits the capability. The
amb control is non-atomic and active, each ambient containing a hole which
represents their continued behaviour,

The ambient names are represented as the node’s single port. In the case
of the ambient named in the capability, this is also linked to the in instance.
To model the reaction above, n is connected to the port of one amb, while m
is connected to both the other amb and in. The reaction is then encoded as:

ambn(inm | �0) | ambm�1 → ambm(ambn�0 | �1) (2.75)

where the similarities between the two are clear.
Bigraphs provide an interesting framework for unifying the two disparate

concepts outlined above in 2.3.1 and 2.3.2. It will be exciting to see how this
theory develops, and whether it can also be used to encode the discrete time
notions described in 2.2.

2.4 Typed Calculi

A common addition to a process calculus is a type system, especially in recent
literature which attempts to use such calculi as the basis for a programming
language or a distributed system. Type systems can be used to restrict the
calculus in ways that aren’t always possible via mere manipulation of the
syntax and semantics. Adding a type system can be as simple as formalising
implicit notions, such as the use of in m as a capability and not as part
of a path [12] or the fact that the x in x(y) should be represent a link and
not a mere value [61]. It may also provide more complex intuitions, by
distinguishing individual entities, controlling mobility [33, 12] or resources
[57] or even providing a full subtyping relation [54, 37]. This section considers
a few examples of such type systems for both the π calculus (2.4.1) and the
ambient calculus (2.4.2).

2.4.1 Type Systems for the π Calculus

Various type systems have been introduced for the π calculus in the literature,
ranging from the simple notion of sorts introduced by Milner [43] to those
introduced for a specific purpose [61] and more complex systems involving
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subtyping [54]. Here, sorts are considered followed by a brief look at the
distinction between values and links made by Sangiorgi [61] for the purpose
of proving termination.

Sorts

The earliest notion of types was introduced by Milner in [42, 43]. The disci-
pline of sorts is simply a way of representing ‘the length and nature of the
vector of names a name may carry in communication’ [42]. Formally, a sort
is a partial function,

ob : Σ → Σ∗ (2.76)

mapping a name to a vector of names. From this, it is simple to define a sort
for all communications in CCS and CaSE as {NAME 7→ ()} (as nothing is
passed) and the monadic π calculus as {NAME 7→ (NAME)}.

Take the simple example of a buffer,

Buf
def
=(in, out)(in(x).outx.Buf〈in, out〉 (2.77)

which simply receives a value on in and transmits it on out. x may be
assigned the sort s1 7→ S, where S is the unknown sort of the buffered value
and s1 is an arbitrary name for the new sort. From this, it follows that both
the in and out channels have the sort s2 7→ (s1), as they both receive or
transmit x.

The purpose behind introducing sorts is to make explicit the need to
match the number of values being received with the number being sent.
Matching the length of these vectors becomes a necessity when dealing with
the polyadic π calculus, which doesn’t have the same uniform sort for all
channels as is present in CCS, CaSE or the π calculus.

Consider the example from [43] of two processes, P and Q:

P
def
= x(y).yuv.0 (2.78)

Q
def
= xy′.y′(w).Q′ (2.79)

where the parallel composition of these two processes should be disallowed.
This is made clear following the first reduction that would result from such
a composition:

P | Q → y′uv.0 | y′(w).Q′ (2.80)
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where Q transmits y′ to P . P then tries to use y′ to transmit two values, u
and v, whereas y′ is only used with one, w, in the input of Q. Applying an
appropriate sort discipline,

u : s1 7→ S

v : s2 7→ T

w : s3 7→ (s1)

y : s4 7→ (s1, s2)

y′ : s5 7→ (s1)

(2.81)

allows the typing of x to be prevented by distinguishing between types based
on the length of the sort. In P , x must have a sort of length two, while in
Q, its sort would only be of length one. This kind of type system formalises
an intuition already adopted implicitly (that the length of the input vector
should equal that of the output vector), which is a common methodology for
type systems.

Typing for Termination

A similar realisation of implicit assumptions is made by Sangiorgi [61] and is
used to prove termination for a subset of possible π calculus processes. The
type system is used to explicitly realise the order of a name. The types use
the simple grammar,

T ::= #T | unit (2.82)

where unit represents a value and a series of # symbols is used to represent
the level of indirection which exists between the value and the current name.
For example, #unit is the type of a first-order link, representing a name
which is used to pass values between processes. A type with more than
one # represents a higher-order link, which is used to pass links between
processes.

This notion is used within the fragment of the type system shown in
Table 2.2 to restrict the possible types used in input and output prefixing,
and restriction. The rule T-Out ensures that an output prefix, vw.M , is only
typeable if:

• v is at least a first-order link (it has one or more #s)

• w has a type, T

• The continuation, M , is typeable
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Table 2.2: Typing Rules from [61]

T-Out
⊢ v : #T,⊢ w : T,⊢ M

⊢ vw.M

T-Inp
⊢ v : #T, x ∈ T,⊢ M

⊢ v(x).M

T-Res
xi ∈ #Ti for some Ti(1 ≤ i ≤ n),⊢ M

⊢ (x1 . . . xn)M

which prevents v from being a simple value. Similarly, T-In restricts v to be-
ing at least a first-order link in v(x).M and T-Res ensures that each restricted
name is a link.

These are all ideas that are adopted implicitly in using the π calculus to
model systems, but, when not enforced by a type system, these properties can
not be included in proofs. The type system in Sangiorgi’s paper, although
simple, allows a set of processes which are syntactically correct, but logically
flawed, to be excluded by only considering processes which are typeable.

2.4.2 Type Systems for the Ambient Calculus

Early work [14] on providing a type system for the ambient calculus focused
on typing the derived communication primitives and specifically the values
being exchanged. While interesting, this doesn’t really relate to the focus
of the calculus, spatial mobility. In [11, 23], a first attempt is made at
providing types for mobility, via mobility and locking annotations. Mobility
annotations are used to mark an ambient as mobile (∨) or immobile (y),
where mobile ambients may be involved in movement operations using the
capabilities in and out. Locking annotations control the use of open; locked
ambients (•) may not be the target of an open capability, while unlocked
ambients (◦) may.

A more general theory is given in [12] with the introduction of groups.
Rather than simply specifying whether or not an ambient can move or be
destroyed, the type system is more specific as to which ambients may effect
others. To avoid dependent types [18], where the types are dependent on the
values being typed, an intermediary notion of a group is introduced. This
is also advantageous in that it allows a series of ambients to have the same
typing, while typing in relation to a single ambient is still possible by having
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a group with only one member.
For example, given two ambients m and n, the types should express that

n can enter m. A dependent formalisation would say that n has the type
CanEnter(m), while, using groups, m is given the type G (where G is a
group) and n is typed as CanEnter(G). Within the type system itself,
ambients are allocated to groups via the use of a group binder, (νG). Just like
the ambient binder, (νn), the scope of this may extrude outwards. However,
the type system prevents it from ever encapsulating ambients which did not
form part of its initial scope (i.e. it only tracks the movements of ambients
that are a member of that group). Within the paper, groups are used to
assign properties to its members, such as the type of communication possible
and the control of crossing or opening ambients.

The types of messages or exchanges may specify either no communication
(Shh) or a tuple of partners for the communication:

S, T ::= Shh | W1 × · · · × Wk (2.83)

For example, in the simplest form of the calculus, Agent[Shh] represents a
group called Agent, the members of which may not exchange values. Nesting
is possible, so Place[Agent[Shh]]] represents a Place where groups of Agents
may stay and continue to be silent.

The full type system, given in [12], includes these exchange types along
with types to control the opening and crossing of ambients. Groups are
parameterised over F ,

F ::=y G,◦ H, T (2.84)

with the final form of ambient type being GyG′[F ]. G′ represents the groups
that the ambient may cross via objective moves (introduced in the same
paper), while G includes the groups that the ambient may cross via standard
subjective movement. Finally, H distinguishes the groups whose ambients
may be open e, while T is as defined above.

A similar system is adopted in [17], but, as this refers to boxed ambients
(see 2.3.2), no control of open is required. It does introduce a new set of
groups, however, to handle the lightweight process mobility presented. In
both cases, the type system has a positive effect on the calculus. Not only
does it alleviate some of the syntax ambiguity, but it also allows a more fine-
grained notion of mobility, where specific ambients can be made immobile or
unable to cross a particular ambient.
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2.5 Biological Applications

Biological systems are inherently concurrent, being focused on the behaviour
of multiple entities from low-level molecules, through bacteria and other bod-
ies, to full cellular structures and beyond. Models which incorporate spatial
distribution, such as the ambient calculus (2.3.2) and P systems (2.3.2) are
especially useful for representing the structure of real-world biological enti-
ties.

Such modelling is becoming common place within the literature[56, 55,
52], where concurrent models represent an alternative to the use of ordinary
differential equations (ODEs). The usual approach is to create a model of the
system within the formalism and then perform simulations. Such simulations
rely on reducing the non-determinism within the model by introducing a
stochastic semantics. In each of the biochemical stochastic π calculus [56],
the BioAmbient variant [55] and P systems [52], these are based on Gillespie’s
algorithm [22].

The algorithm selects which reaction occurs next and the necessary ad-
vancement of the system’s ‘clock’ (a real time value in this context, rather
than some discrete notion). A probability is associated with each reaction,
so that the algorithm basically runs as follows:

1. a0 is calculated as the sum of the probabilities.

2. Two random numbers, r1 and r2, are generated from a uniform distri-
bution over the unit interval 0 to 1.

3. Calculate the waiting time for the next reaction, τi = 1
a0

ln( 1
r1

)

4. Take the index, j, of the reaction such that

j−1∑

k=1

pk < r2a0 ≤

j∑

k=1

pk

where pk is the kth probability.

5. Return the pair (τi, j)

determining which one occurs. Slight alterations are made in distributed
models to handle the rules arising from different localities. For example, the
P systems model [52] adapts the algorithm to form a multi-compartmental
variant, which treats each membrane separately, to a degree, while also taking
into account that activity in one membrane may affect others.

Clearly, different formalisms offer different approaches. In the original
π calculus approach of [56], the focus was solely on communication with
biological compartments abstracted as private channels. The model given
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for BioAmbients [55] is more natural due to the explicit realisation of these
compartments.

Take the following example from [55],

System ::= molecule[Mol] | . . . | molecule[Mol] | cell[Porin]

Mol ::= enter cell1.Mol + exit cell2.Mol

Porin ::= accept cell1.Porin + expel cell2.Porin

(2.85)

which demonstrates a membranal pore, which molecules use to pass through
a membrane. Both the cell and the molecules are represented by ambients.
Each molecule is controlled by a process, Mol, which, at any time, has the op-
tion of performing either an enter or an exit. Similarly, the Porin process,
which represents the membranal pore, may accept or expel.

Within the BioAmbient calculus, movement is synchronous and takes
place by the pairing of an enter and accept action (the equivalent of in) or
an exit and expel action (equivalent to out). The first action in each case
is used by the moving process. Both must also mention the same channel
name (cell1 and cell2 here). In the case of the system shown above, both
Mol and Porin permanently offer their halves of this pairing. However, the
spatial context makes one of them inapplicable. Initially, exit and expel

won’t synchronize, as Mol is not inside the ambient from which it is being
expelled. Likewise, once it has entered, it can’t do so again, even though the
actions make this possible.

Models such as this seem a little unnatural as molecules are modelled as
both an ambient and a process. This is because only ambients may move
but only processes can emit the necessary mobility primitives to do so. The
notions of mobility present in the ambient calculus, including this idea, have
been carried across, even though it doesn’t directly adopt the primitives of
the ambient calculus; the style is still more akin to the π calculus.

In contrast, [52] takes a different approach using P systems, representing
signals and proteins directly as objects in the membranes. One particular
application of this technique is quorum sensing. This is a gene regulation
system where a population of bacterial cells communicate in order to regulate
the expression of certain genes in a co-ordinated way which is dependent on
the size of the population. [52] presents a model of this phenomenon in vibrio
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fischeri, a marine bacterium, using a P system18:

Πvf = (O, {e, b}, µ, (w1, e), (w2, b), . . . , (wn+1, b),Rb,Re)

O = {OHHL,LuxR,LuxR-OHHL,LuxBox, LuxBox-LuxR-OHHL}

w1 = ∅

wi = {LuxBox} where 2 ≤ i ≤ n + 1

where each bacteria is represented as a membrane, b, within an environment
membrane, e. The alphabet, O, contains the signal, OHHL, the protein,
LuxR and the regulatory region, LuxBox, in addition to the protein-signal
complex (LuxR − OHHL) formed and its regulatory region, LuxBox −
LuxR − OHHL. The initial configuration shown above leaves the envi-
ronment empty and places just the genome, LuxBox, inside each bacteria
membrane to start production of the signal and the protein. Rb and Re

contain the rules which affect the bacteria and the environment respectively.
The reader is referred to the full paper for full details of these.

This model seems much more natural and has a clearer correspondence
with the real-world representation. The main issue, as noted earlier in 2.3.2,
is that the theory of P systems is not as well developed as that of the π
calculus (upon which the BioAmbients calculus is essentially based). This
can prove problematic, especially when model checking such models.

2.6 Conclusion

In conclusion, this review has taken a brief look at the field of concurrency,
largely from the perspective of process calculi. Initially, it was shown that,
while universal Turing machines and the λ calculus can simulate any recur-
sive function, their inherent sequential behaviour makes them unsuitable for
modelling concurrent systems. CCS, in contrast, is less expressive but can
model this kind of behaviour.

The π calculus seems to provide the best of both worlds, being able to
model concurrent systems and still retain the expressiveness of the λ calcu-
lus. However, a key limitation was identified which reinforced the idea that
expressivity only makes a model capable, and not suitable, for simulating
any recursive function: modelling global synchronisation via a broadcasting
agent. This limitation seems to hold for both CCS and the π calculus, and

18This method of defining the configuration differs slightly from that in 2.3.2, as it also
includes a set of labels, rather than assuming that the natural numbers are used.

52



it is also likely that it applies to many other process calculi, such as the
ambient calculus, a formalism that provides a more natural form of mobility
via structural changes.

Discrete timed calculi can overcome this. An example using TPL to
model a compositional broadcasting agent, using semantics suitable for any
arbitrary number of processes, is provided in 2.2. Extensions to TPL, such
as CaSE, may scale even further using synchronous encapsulation to create
systems of multiple components.

Type systems were also briefly considered as a way of restricting the
behaviour of a process algebraic model. These tend to explicitly reduce the
expressivity of the formalism in order to ensure that unwanted constructs
can not be created by making them untypeable. This also makes it easier to
prove properties of the calculus. Biology was also considered briefly (see 2.5),
as a potential application area. P systems seem the most natural formalism,
but they lack some of the proven theoretical aspects of process calculi.

Following much consideration of the available literature, the concept of a
calculus which combines both the mobility of the π and ambient calculi with
the inherent scalability of a calculus like CaSE seems novel. This research
hopes to provide just such a formalism.
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Chapter 3

Current Work

The aim of this research is to construct a process calculus which combines the
notions of discrete time and mobility. Earlier work during an undergraduate
project focused on developing a semantics for the Cashews1[49] language,
using the CaSE process calculus (see section 2.2.1) and later, a conservative
extension to it called Cashew-Nuts. It became clear during this project that
it would be interesting to further extend CaSE with a notion of mobility, and
this led to the development of the calculus of Typed Nomadic Time (TNT)
discussed here.

3.1 The Calculus of Synchronous

Encapsulation (CaSE)

The syntax for CaSE, given in [47], is as follows:

E ,F ::= 0 | ∆ | ∆σ | α.E | E + F | (E | F) | ⌊E⌋σ(F) |

⌈E⌉σ(F) | µX.E | X | E \ a | E/σ
(3.1)

where α ∈ Act as in the definition of CCS (see 2.1.1). 0, α.E , E +F , (E | F),
µX.E , X and E \ a retain their behaviour defined in CCS, but now exhibit
additional actions due to the presence of clocks. These are drawn from a
countably infinite set, T , over which σ ranges.

There are now transitions for the 0 process, as, while the process has no
explicit behaviour, it can idle over the ticks of the clocks. This also applies
to actions in general:

1Cashews is a language for web service composition, initially based on OWL-S.
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a.0
σ
→ a.0 (3.2)

assuming a clock context containing just the one clock, σ. Similarly, non-
deterministic choice and parallel composition exist through time, so both
sides can evolve due to a clock tick, while the operator remains in place.
This gives the following possible derivations for a.0 | b.0 (where b 6= a):

1. a.0 | b.0
a
→ 0 | b.0

2. a.0 | b.0
b
→ a.0 | 0

3. a.0| b.0
σ
→ a.0 | b.0

with the same clock context as above. The third derivation is duplicated
for each available clock that can tick over both sides of the composition. In
cases where both sides may synchronize, causing a τ transition, this takes
precedence over the clock transitions, due to maximal progress (see 2.2) and
the original set of derivations for parallel composition (see 2.1.1) are available
instead.

The changes to non-deterministic choice are simpler, as the operator itself
does not generate silent actions. So, if both sides allow the clock to tick, then
the following derivations will occur:

1. a.0 + b.0
a
→ 0

2. a.0 + b.0
b
→ 0

3. a.0 + b.0
σ
→ a.0 + b.0

again with the single clock, σ, as the context.

3.1.1 Timeouts

Moving on to the new operators, CaSE, as presented in [47], includes two
variants of the timeout operator, first seen in TPL. Recall from 2.2 that the
operator essentially allows a decision to be made, based on the presence of a
clock tick. In the general scenario,

⌊E⌋σ(F ) (3.3)

F will act if E fails to, prior to a clock tick. If E can perform a τ action,
then this will prevent the clock tick and E will evolve. Both operators in
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CaSE maintain this core behaviour, which is central to the concept of global
synchronization explained earlier.

The difference between the two operators in CaSE lies in their behaviour
with regard to other clocks. With the fragile timeout, ⌊E⌋σ(F ), any possible
transition on E will cause the removal of the timeout. So, with ⌊a.0⌋σ(b.0)
and a clock context of σ and ρ, the following derivations can occur:

1. ⌊a.0⌋σ(b.0)
a
→ 0

2. ⌊a.0⌋σ(b.0)
σ
→ b.0

3. ⌊a.0⌋σ(b.0)
ρ
→ a.0

where both the a and the ρ transition leave only the left-hand side of the
timeout.

The stable timeout differs by continuing to exist through time until some
action occurs. While it exhibits the same behaviour in response to actions
or the tick of the specified clock, the ticks of other clocks only cause the left-
hand side to evolve; the timeout itself is retained. Thus, ⌈a.0⌉σ(b.0) gives a
different set of derivations:

1. ⌈a.0⌉σ(b.0)
a
→ 0

2. ⌈a.0⌉σ(b.0)
σ
→ b.0

3. ⌈a.0⌉σ(b.0)
ρ
→ ⌈a.0⌉σ(b.0)

where the ρ transition no longer causes the dissolution of the timeout.

3.1.2 Clock Stopping and Insistency

The remaining operators further control the behaviour of the clocks. ∆
prevents all clocks from ticking, while ∆σ prevents only the ticks of the
specified clock, σ. ∆ is similar to the CCS version of 0, as it has no possible
transitions. ∆σ exhibits transitions for all other clocks within the current
context. So, for a context containing both σ and ρ, ∆σ has a single transition,

∆σ
ρ
→ ∆σ (3.4)

which is replicated for any other clocks in the context, which are not equal
to σ.

The stopping of clocks is used to provide insistency. Normally, a process
a.P has two possible derivations:
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1. a.P
a
→ P

2. a.P
σ
→ P

with a clock context containing only σ. To ensure that the first of these two
derivations occurs, or, in other words, to insist that a is performed before
the next tick of the clock, σ, ∆ is used. The semantics for an insistent prefix,
α.P , may be given as:

[[α.P ]]
def
= α.P + ∆ (3.5)

where the presence of ∆ prevents a σ transition from occurring on the right-
hand side of the choice, and thus for the choice as a whole (as both sides must
move through time simultaneously). This leaves only one available action,
a
→, as required. Clearly, insistency relative only to one particular clock may
also be defined in a similar manner, using ∆σ instead.

[[ασ.P ]]
def
= α.P + ∆σ (3.6)

While on the subject of derived syntax, it is also possible to define a clock
prefix, akin to the existing action prefix:

[[σ.P ]]
def
=⌈0⌉σ(P ) (3.7)

where the stable timeout ensures that the σ.P will be retained until σ ticks,
despite the ticks of other clocks. As the only transitions for 0 are clock ticks,
only a tick from σ will cause the process to evolve and become P .

The two notions of a clock prefix and insistency can then be combined to
give an insistent clock prefix:

[[σ.P ]]
def
=⌈∆⌉σ(P ) (3.8)

which differs from a standard clock prefix by only ever allowing the one
transition, σ.P

σ
→ P , whereas σ.P allows an arbitrary number of transitions

from other clocks before this occurs.

3.1.3 Encapsulation

Clock hiding is used to provide scoping for the ticks of a clock. Take the
following situation,

(P/σ) | Q (3.9)

where /σ hides the clock, σ, so that its ticks may only be seen by P . Q
instead sees a silent action each time σ ticks. Such clock hiding is central
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to the encapsulation of components present in CaSE. When coupled with
restriction, components can be made to emit only silent actions from the
perspective of external processes.

3.2 Localising the Calculus

Localisation, discussed in detail in 2.3.2, effectively adds another level of
grouping to the calculus. A set of composed processes may be contained
within one locality, a notion which is often used in the modelling of distri-
bution. This idea, which can be taken to its logical conclusion by forming a
hierarchy of such localities, has echoes of the notion of clock hiding within
CaSE, as just described.

Thus, the first step in the evolution towards TNT is to combine these
two hierarchical concepts by effectively localising CaSE. The notion of com-
ponents and encapsulation is explicitly realised by a locality, which also han-
dles the hiding of clocks. As a result, the clock hiding operator from CaSE
disappears, being replaced by a new operator which allows the creation of
localities. The bounds of the locality define both a new group and the scope
of the clock hiding. The syntax for localised CaSE is thus:

E ,F ::= 0 | ∆ | ∆σ | α.E | E + F | (E | F) | ⌊E⌋σ(F) |

⌈E⌉σ(F) | µX.E | X | E \ a | m[E ]{~σ}
(3.10)

where m represents an arbitrary locality name2; the names of localities are
not distinct, and hence do not form a set. In particular, m may be equal to
the empty string, ǫ, thus facilitating the use of anonymous localities. This
allows the semantics of CaSE’s clock hiding to be encoded:

[[E/σ]]
def
= [E]{σ} (3.11)

thus making localised CaSE a conservative extension. The localities form a
forest structure, due to the ability to nest localities to an arbitrary depth
and the possibility of multiple localities occurring at the top level.

Recall the example of clock hiding above (3.9). This becomes:

[P ]{σ} | Q (3.12)

in localised CaSE, or:

2Note that although names are added to the localities here, this is not really necessary
at this stage; they provide nothing more than a way to refer to localities in talking about
a system. However, they are necessary for providing migration as discussed in 2.3.2
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m[P ]{σ} | Q (3.13)

if an arbitrary name, m, is assigned to the locality. Just as with the clock
hiding operator, the clock σ is hidden outside the locality, m, causing its
ticks to be visible only to P .

With this extension the set of visible clocks for a particular locality may
be obtained by taking the union of its set of clocks and the sets of the parent
localities. For example, consider the more complex scenario:

n[E | m[F | k[G]{σ}]{ρ}]{γ} (3.14)

where the top-level locality, n, contains a process E and a further sub-locality,
m. Likewise, m contains both a process, F , and the sub-locality, k. Finally,
k contains just the single process, G. The set of clocks for the locality k is
{σ} and its parents are m (with the set {ρ}) and n (with {γ}). Thus, the
set of visible clocks for k is {σ}∪ {ρ}∪ {γ} or simply {σ, ρ, γ}, which means
that G, located in k, can see the ticks of all three clocks.

F , by comparison, can only see the ticks of the clocks, ρ and γ, as σ
is hidden outside k. E, in the top-level locality, n, can only observe silent
actions resulting from the two hidden clocks, ρ and σ, but can see the ticks
of γ. Taking this further, it is clear that the clock context, the set of clocks
within the system, can be derived as the union of the sets of clocks associated
with each locality ({σ, ρ, γ} in this case).

3.3 Adding Mobility

Localised CaSE makes the notion of components and encapsulation clearer
than in the original calculus, by allowing them to be given explicit names.
However, it doesn’t provide a great deal of extra functionality3. The most
natural progression from this stage is to add mobility. For this, the primitives
of the ambient calculus are adopted, as they provide a very natural and
simplistic formalism, which builds on the component-oriented nature of the
calculus, now explicitly realised by localities. This is shown in more detail in
3.3.1.

In addition, TNT allows the movement of individual processes. In the
ambient calculus, only ambients can move, which restricts the separability
of processes. For a given group of processes, the size of the group may only
change by:

3Although the semantics could be adapted so as to use the localities for bisimulation,
as in 2.3.2.
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1. One of the processes becoming 0. The ambient calculus includes a
structural congruence law,

E | 0 ≡ E (3.15)

which allows such processes to be removed. Note that this doesn’t hold
for TNT, due to the addition of clocks. 0 exists through time, and,
as such, has transitions for each clock. Thus, if 0 is removed from the
above equation, there will be fewer possible transitions and so it follows
that the two should be regarded as different processes.

2. The process splitting into two or more processes via parallel composi-
tion. For example, in m.(E|F ) enters the ambient, m, and then splits
into two separate processes, E and F .

3. Another process opening the ambient, causing the set of processes to
merge with those in the parent.

What the ambient calculus doesn’t allow is for a selected process or group
of processes to be moved from one ambient to another. That process or group
must be in its own ambient for this to happen.

Take the example process,

m[E | F | G] | n[0] | H (3.16)

where E, F , G and H are all processes and m and n are ambients. The
topology of this process may change in several ways, as outlined above. Any
of the four processes might evolve to 0, or fork into two or more processes.
In addition, E, F or G may emit an in n capability, causing the ambient m
to move inside n. Similarly, H may perform an open m, causing m to be
removed and the top-level to include all four processes.

So, several events may occur but there are also some that are intuitive,
but difficult to achieve. For instance, all three processes in m must move
as a unit, whether this is to the top-level due to an open capability or as a
result of m moving in to n. Moving one process, E for example, requires the
interaction of both E itself and another process at the final destination.

To move E to the top level on its own requires converting it to the form,

Emov
def
= z[out m.E] (3.17)

where z is a new name, which doesn’t occur free in either E, F , G or H. The
effect is clearer when this is placed in context,

m[z[out m.E] | F | G] | n[0] | H (3.18)
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where it can be clearly seen that the new capability prefixed on E will cause
the new surrounding ambient, z, to move outside of m. To actually have E
at the top-level, and not E nested in an ambient, requires the presence of a
top-level process to open the z ambient. This results in something along the
lines of:

m[z[out m.E] | F | G] | n[0] | H | open z.0 (3.19)

to truly encode the movement of E alone. Moving just E into n is even more
convoluted:

m[z[out m.in n.E] | F | G] | n[open z.0] | H (3.20)

and neither are particularly natural. TNT instead provides this functionality
as a base part of the syntax, which will be explored in 3.3.2.

Finally, it should be noted that the scope of an action is implicitly re-
stricted to the bounds of a locality within TNT. For instance, in the following
process:

a.P | m[a.Q]{σ} (3.21)

synchronization between the two processes is not permitted as they lie on
either side of a locality boundary. This is not an issue, as the presence of
mobility allows processes to move into a situation where the co-action is in
scope. In addition, TNT (at present) does not incorporate the scoping of
locality names.

3.3.1 Location Mobility

To add an ambient calculus style of mobility, the existing syntax of localised
CaSE is extended with a mobility prefix, M.E , to give:

E ,F ::= 0 | ∆ | ∆σ | α.E | E + F | (E | F) | ⌊E⌋σ(F) |

⌈E⌉σ(F) | µX.E | X | E \ a | m[E ]{~σ} | M.E
(3.22)

where M is further defined as:

M ::= in m | out m | open m (3.23)

with m again representing the name of a locality. The behaviour of these
primitives is identical to the behaviour of their equivalents in the ambient
calculus, so just a short recap of section 2.3.2 is given here, using the syntax
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above. Note that the syntactic abbreviation, m[E], is used to represent
m[E]{}.

When a process emits an in m capability, the surrounding locality may
move into a sibling locality with the name, m. Given the context,

m[E] | n[0] (3.24)

E may be defined as

E
def
= in n.E ′ (3.25)

allowing the derivation

m[E] | n[0]
in n
→ n[m[E ′] | 0] (3.26)

to occur. Similarly, defining E ′ to be

E ′ def
= out n.E ′′ (3.27)

allows the converse

n[m[E ′] | 0]
out n
→ m[E ′′] | n[0] (3.28)

to take place, out m allowing the surrounding locality to move outside a
parent locality named m. As noted above, these are fairly dull, both being
identical to the same primitives in the ambient calculus. The behaviour of
open m is more interesting, due to its interaction with the locality’s clock
environment.

Take the example context,

m[E | n[F ]{σ}]{ρ} (3.29)

where E is defined as

E
def
= open n.E ′ (3.30)

and thus may cause the locality, n, to be destroyed

m[E | n[F ]{σ}]{ρ}
open n
→ m[E ′′ | F ]{σ,ρ} (3.31)

and the two clock environments to merge. As a result, not only does the
context of F change with respect to nearby processes, as in the ambient
calculus, but now E is also affected. Prior to the emission of open n, E could
only see ticks from the clock ρ. The ticks of σ were converted to silent actions
by the locality barrier. Following the dissolution of the locality, n, these ticks
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become visible to E. So, the open capability in TNT not only changes the
locality hierarchy, but also the clock context within the parent locality.

Just as in the ambient calculus, the reduction of capabilities is subject to
the availability of applicable localities, thus allowing for stalled capabilities
(when there are none) and non-determinism (when there are several). For
example, the process

m[open n.E | n[F ]{σ} | n[G]{γ}]{ρ} (3.32)

has two possible derivations

1. m[open n.E | n[F ]{σ} | n[G]{γ}]{ρ}
open n
→ m[E | F | n[G]{γ}]{σ,ρ}

2. m[open n.E | n[F ]{σ} | n[G]{γ}]{ρ}
open n
→ m[E | n[F ]{ρ} | G]{γ,ρ}

and, as a result, two different resulting clock contexts. In the full calculus,
this non-determinism is restricted by the notion of bouncers, introduced in
section 3.3.3, which reduce the possibility of grave interferences (see 2.3.2).

3.3.2 Process Mobility

In TNT, the mobility prefix is further extended as follows:

M ::= in m | out m | open m | on β in m | on β out m (3.33)

where β ∈ N and thus refers to an action. While the location mobility
described above is subjective (the process who requests the move does the
move), process mobility, in this form, is objective. The process which emits
one of the two new capabilities synchronizes with a partner process on the
given action, and it is this partner which actually moves. The partner will be
a process in the same locality, due to the scoping of actions described above.

Such behaviour is initially difficult to understand, but can be made clearer
with a simple example. Take the process,

on go in m.E | go.F | m[0]{σ} (3.34)

where E is emitting the capability on go in m, but it is go.F that will actually
move,

on go in m.E | go.F | m[0]{σ}
τ
→ E | m[F | 0]{σ} (3.35)
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with the continuation, F , continuing to evolve in the locality m. Note that
the transition is labelled with a silent τ action to represent the synchroniza-
tion, rather than with a label to match the mobility primitive. There is a
distinct advantage to this, in that movements are then treated in the same
way as synchronizations. They form part of the synchronous clock cycles, via
maximal progress, which allows them to be used for broadcasting in the same
compositional style demonstrated in 2.2 for actions. In the next section, the
addition of bouncers results in the location mobility primitives also emitting
τ actions and thus also fitting in to this same structure.

Encoding process mobility in this objective form doesn’t prevent it from
being used to perform subjective movement. As processes can fork, a process
that wishes to move can evolve into a situation where it is composed in paral-
lel with a new process that exhibits the required capability. To demonstrate
the converse action, out, in the scenario above, F can be defined as

F
def
= leave.F ′ | on leave out m (3.36)

where the process on the right moves the one on the left outside m. In
context, this performs as follows:

E | m[leave.F ′ | on leave out m.0 | 0]{σ}
τ
→ E | F ′ | m[0 | 0]{σ} (3.37)

to give a final process which is very similar to the original.
More generally, a subjective process movement may be encoded as

[[in m Q.E]]
def
= z.Q | on z in m.E (3.38)

where F is the process that will move in to m, E is the continuation and
z is a new name that doesn’t appear free in the surrounding context. The
converse is pretty much the same:

[[out m Q.E]]
def
= z.Q | on z out m.E (3.39)

with the most problematic issue with these definitions being the use of z.
Subjective movement is safer on an ad-hoc basis where the surrounding con-
text is known.

3.3.3 Bouncers

This description of TNT is concluded by the addition of the final element,
the bouncers. Named after the person who stands outside a night club, the
bouncer is an additional property of a locality which appears in the top right.
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It has no real behaviour of its own, but instead performs the job of protecting
the locality, essentially being a process with a more limited choice of available
actions4. This is achieved by the bouncer dictating which capabilities may
affect its locality, via the use of a series of co-capabilities, along the lines of
those in [33] (see section 2.3.2).

The full syntax of TNT may now be given as:

E ,F ::= 0 | Ω | ∆ | ∆σ | α.E | E + F | (E | F) | ⌊E⌋σ(F) |

⌈E⌉σ(F) | µX.E | X | E \ a | m[E ]E{~σ} | M.E
(3.40)

where M is now

M ::= in m | out m | open m | on β in m | on β out m |

in | out | open
(3.41)

and Ω represents the bouncer with no behaviour (the equivalent of 0). For
a process or locality to enter another locality, the bouncer must allow this
to occur by providing the corresponding in co-capability. Likewise, it must
provide out to allow a process or locality to leave. With regard to the de-
struction of a locality, the locality’s bouncer must allow it to be removed by
providing a open co-capability.

Recall the example given in 3.3.1.

m[in n.E ′] | n[0] (3.42)

With the addition of bouncers, this becomes:

m[in n.E ′]Ω | n[0]in.Ω (3.43)

where, again, a syntactic abbreviation of m[E]F for m[E]F{} is used when the
clock context is empty. m has Ω as its bouncer, as no movement affects that
locality. The bouncer for n is defined as in.Ω, which allows the movement of
m in to n to occur:

m[in n.E ′]Ω | n[0]in.Ω τ
→ n[m[E ′]Ω | 0]Ω (3.44)

but any subsequent behaviour is disallowed, as the bouncer of n has now
evolved to also be Ω. Using this method, it becomes possible to specify how

4This limited choice is only explicitly imposed by the type system. Syntactically, there
is no restriction.
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many entities (processes or localities) may enter a locality. For example, the
bouncer:

µX.in.in.out.out.X (3.45)

allows two entities to enter, but two must then leave before another can enter.
On the subject of exiting a locality, the synchronization with out works in
the same way as in:

n[m[out n.E ′′]Ω | 0]out.Ω τ
→ m[E ′′]Ω | n[0]Ω (3.46)

Finally, the destruction of a locality is probably the easiest of the three
to understand. Again, using an example from 3.3.1,

m[open n.E ′ | n[F ]{σ}]{ρ} (3.47)

it may be endowed with bouncers to give:

m[open n.E ′ | n[F ]open.Ω
{σ} ]Ω{ρ} (3.48)

This allows the following synchronization to occur:

m[open n.E ′ | n[F ]open.Ω
{σ} ]Ω{ρ}

τ
→ m[E ′ | F ]Ω{σ,ρ} (3.49)

in which the clock contexts merge, the actions of F become available to E
and the bouncer of n disappears along with n itself.

As mentioned in the previous section, all capabilities are now performed
as a synchronization, following the introduction of bouncers. This means
that any movement will cause an internal action, τ , to occur which fits in
nicely with the synchronization cycles and maximal progress drawn from
CaSE. This notion is central to the example presented in section 3.5.

3.4 The Semantics

This section gives TNT a structured operational semantics based on a la-
belled transition system, by extending the existing semantics of CaSE. Table
3.1 gives the subset of the semantics which are common to both TNT and
CaSE, with σ and ρ ranging over the set of clocks, α over the set of actions,
γ over both and a over the actions sans τ . Idle and Patient represent the
progress of time over 0 and action prefixes respectively. Act allows an action
to be performed, with an appropriately labelled transition, with the process
continuing as E. Stall represents the stopping of a specific clock, σ, allowing
transitions to occur for any other clock, ρ.
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Table 3.1: Semantics: Common CaSE Subset

Idle
−

0
σ

−→ 0
Act

−

α.E
α
→ E

Patient
−

a.E
σ
→ a.E

Stall
−

∆σ
ρ
→ ∆σ

ρ 6= σ

Sum1
E

α
→ E ′

E + F
α
→ E ′

Sum2
F

α
→ F ′

E + F
α
→ F ′

Sum3
E

σ
→ E ′, F

σ
→ F ′

E + F
σ
→ E ′ + F ′

Par1
E

α
→ E ′

E | F
α
→ E ′ | F

Par2
F

α
→ F ′

E | F
α
→ E | F ′

Par3
E

a
→ E ′, F

a
→ F ′

E | F
τ
→ E ′ | F ′

Par4
E

σ
→ E ′, F

σ
→ F ′, E | F

τ
9

E | F
σ
→ E ′ | F ′

FTO1
E

τ
9

⌊E⌋σ(F )
σ
→ F

FTO2
E

γ
→ E ′

⌊E⌋σ(F )
γ
→ E ′

γ 6= σ STO1
E

τ
9

⌈E⌉σ(F )
σ
→ F

STO2
E

α
→ E ′

⌈E⌉σ(F )
α
→ E ′

STO3
E

ρ
→ E ′

⌈E⌉σ(F )
ρ
→ ⌈E ′⌉σ(F )

ρ 6= σ

Rec
E

γ
→ E ′

µX.E
γ
→ E ′{µX.E/X}

Res
E

γ
→ E ′

E \ a
γ
→ E ′ \ a

γ 6= a
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Table 3.2: Semantics: Clock Hiding and Mobility

LHd1
E

σ
→ E ′

m[E]B~σ
τ
→ m[E ′]B~σ

σ ∈ ~σ LHd2
E

α
→ E ′

m[E]B~σ
α
→ m[E ′]B~σ

LHd3
E

ρ
→ E ′, E

σ
9

m[E]B~σ
ρ
→ m[E ′]B~σ

ρ 6∈ ~σ, σ ∈ ~σ Cap
−

M.E
M
→ E

Sum1 and Sum2 represent the performance of an action on either side
of the summation operator, thus also implying the commutativity of the
operator. Par1 and Par2 do the same for parallel composition. Sum3 and
Par4 represent the passage of time over these two operators. Note that time
must be able to pass on both sides, and that maximal progress is enforced
by the restriction E | F

τ
9 in Par4.

Par3 encapsulates synchronization; when one of the processes can per-
form an action and the other can perform the matching co-action, a silent
action is performed and both evolve. FTO1 and STO1 are identical, allow-
ing the dissolution of the timeout via a tick of the associated clock, σ, on
the provision that E

τ
9. The difference between the two timeouts is shown

by FTO2, STO2 and STO3. FTO2 is a general rule for the fragile timeout,
which allows E to be performed and the timeout removed on the occurrence
of any transition other than the clock tick. For the stable timeout, the effect
of clocks and actions are separated. According to STO3, clocks other than σ
may tick, but the timeout stays in place. STO2 handles the removal of the
stable timeout, due to an action performed by E.

Finally, Rec provides recursion, performing substitution of X for the body
of the recursion as soon as any transition, γ, occurs and Res defines restric-
tion, which disallows any transitions for the given action.

The semantics given in Table 3.2 are similar to the hiding rules given
for CaSE, but are instead applied to the new syntactic form used in TNT.
Also included is the rule which allows the mobility prefix to evolve, thus
completing the semantics for the syntax of E and F .

The rules are quite simple. LHd1 provides the conversion of the ticks
of the hidden clocks to silent actions; if E can perform a σ transition, then
it performs a τ transition in a context where σ is one of the hidden clocks.
LHd2 and LHd3 simply allow the remaining actions and clock transitions
respectively, to occur normally. Cap allows the mobility capabilities and co-
capabilities to emit a transition, but the process itself can only evolve in the
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Table 3.3: Semantics: Locality Mobility

InLoc
B1

in
→ B′

1

n[in m.E | F ]B2

~σ | m[G]B1

~ρ

τ
→ m[G | n[E | F ]B2

~σ ]
B′

1

~ρ

OutLoc
B1

out
→ B′

1

m[G | n[out m.E | F ]B2

~σ ]B1

~ρ

τ
→ n[E | F ]B2

~σ | m[G]
B′

1

~ρ

Table 3.4: Semantics: Open

Open
B1

open
→ B′

1

n[open m.E | m[F ]B1

~σ ]B2

~γ

τ
→ n[E | F ]B2

~γ∪~σ

context of movement.
On that subject, Table 3.3 gives the rules required for location mobility.

InLoc allows a τ transition to occur and n to move into m if both an in m
and an in transition are available from the process in m.E and the bouncer,
B1, respectively. OutLoc is basically the same thing, but for out m.E and
out.

Table 3.4 depicts the behaviour of open m, which again causes a τ tran-
sition to occur when both an open m and an open transition are available.
The named locality is also destroyed and the two clock contexts unified.

Finally, Table 3.5 shows the semantics for the two process mobility capa-
bilities. In both rules, E moves due to a mobility primitive which is part of
F . This occurs if on a in m or on a out m, a and in or out respectively, and
a τ action is emitted as a result of this three-way synchronization.

Note that channels in E may become unrestricted due to its move to
a different locality. This is illustrated in the rules by ((E | G) \ ~b), which

becomes simply G \ ~b when E moves. As a result, any names that were

members of~b and thus restricted in E are no longer in this situation following
the movement of the process. Actions are scoped to individual localities, and
the names are unique, so E can neither see the name in the old locality, nor
maintain its own copy.
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Table 3.5: Semantics: Process Mobility

ProcIn
E

a
→ E ′, B1

in
→ B′

1

((E | G) \~b) | on a in m.F | m[H]B1

~σ

τ
→ (G \~b) | F | m[H | E ′]

B′

1

~ρ

ProcOut
E

a
→ E ′, on a out m.F

on a out m
→ on a out m.F,B1

out
→ B′

1

H | m[((E | G) \~b) | on a out m.F ]B1

~σ

τ
→ H | E ′ | m[(G \~b) | F ]

B′

1

~σ

3.5 A Simple Example

Consider the familiar children’s game of musical chairs. The conduct of the
game can be divided into the following stages:

1. The players begin the game standing. The number of players is initially
equal to the number of chairs.

2. The music starts.

3. A chair is removed from the game.

4. The music stops.

5. Each player attempts to obtain a chair.

6. Players that fail to obtain a chair are out of the game.

7. The music restarts. Any players who are still in the game leave their
chairs and the next round begins (from stage three).

The winner is the last player left in the game. A model of this game can be
created using the TNT process calculus.

The game environment is represented using localities. In the musical
chairs scenario, each chair is represented by a locality, as is the ‘sin bin’,
to which players are moved when they are no longer in the game. These
localities are all nested inside a further locality which represents the room
itself. This is not a necessity, but makes for a cleaner solution; it allows
multiple instances of the system to be nested inside some larger system, each
performing its own internal interactions and entering into the synchronization
cycle of the larger system.
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Figure 3.1: The Musical Chairs Environment

The locality structure is represented graphically by Fig. 3.1 and in the
calculus by the equation shown below.

room[chair[0]CB | chair[0]CB | sinbin[0]SB | P | P | GM ]Ω{σ} (3.50)

where m[E]F is abbreviated from m[E]F{{}}. The players themselves are repre-
sented by processes. This allows them both to interact and to move between
localities. A gamesmaster process is also introduced. This doesn’t play an
active role in the game itself, but is instead responsible for performing the ad-
ministrative duties of removing chairs from the game and controlling player
movement. The process definitions are summarised in Table 3.6, and make
use of the derived syntax for a clock prefix, σ.P , shown in 3.1.2.

The presence of music is signified by the ticks of a clock, σ. A tick from σ
is also used to represent the implicit acknowledgement that everyone who can
obtain a chair has done so, and that the remaining player left in the room
has lost. With regard to the bouncers of the localities, the room locality
is not prone to either destruction or the entry or exit of other localities,
having a bouncer simply equal to Ω. This retains the encapsulation of the
model as a single room locality, and prevents other processes or localities
from interfering with its behaviour.

The definition of appropriate bouncers is essential for the chairs (3.51)
and the sin bin (3.52). It is the chair bouncer that enforces the implicit
predicate that only one player may inhabit a chair at any one time, while the
sin bin bouncer prevents players leaving the sin bin once they have entered.

To model stage one of the game, n player processes and n chair locations
are placed in the room. The advantage of using TNT for this model is
that the actual number of players or chairs is irrelevant. They only have to
be equal at the start to accurately model the game. The calculus allows the
creation of a compositional semantics, as discussed in chapter 1, which works
with any n.

For the purposes of demonstration, n is assumed to be two to give the
following starting state:
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Table 3.6: Summary of Processes and Derived Syntax for Musical Chairs

CB
def
= µX.(in.out.X + open) (3.51)

SB
def
= µX.in.X (3.52)

GM1
def
= σ.GM2 (3.53)

GM2
def
= open chair.GM3 (3.54)

GM3
def
= σ.GM4 (3.55)

GM4
def
= µX.(⌈on sit in chair.X⌉σ(GM5)) (3.56)

GM5
def
= µX.(⌈on leave in sinbin.X⌉σ(GM1)) (3.57)

P
def
= σ.σ.MP (3.58)

MP
def
=⌈sit.PIC⌉σ(Loser) (3.59)

PIC
def
= σ.σ.PLC (3.60)

PLC
def
= on stand out chair.0|stand.P (3.61)

L
def
= leave.0 (3.62)

room[chair[0]CB | chair[0]CB | Pr | P | GM1]Ω{σ}. (3.63)

The room and chairs appear as shown earlier. The player processes (3.58)
simply wait until two clock cycles have passed, the end of each being signalled
by a tick from σ. The intermittent period between the ticks (the second clock
cycle) represents the playing of the music.

Stage two, where the music is started, is thus represented simply by the
first tick of σ,

room[chair[0]CB | chair[0]CB | P | P | GM1]Ω{σ}
σ

−→ room[chair[0]CB | chair[0]CB | σ.MP | σ.MP | GM2]Ω{σ}
(3.64)

which the gamesmaster (GM1 (3.53)) also waits for, before evolving into
GM2 (3.54). The second cycle, prior to the music stopping, is used to remove
a chair from the game. Maximal progress, as explained in section 1, ensures
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that this occurs before the next clock tick, as the removal emits a silent
action. The transition from stage three to stage four is thus as follows:

room[chair[0]CB | chair[0]CB | σ.MP | σ.MP | GM2]Ω{σ}
τ

−→ room[0 | chair[0]CB | σ.MP | σ.MP | GM3]Ω{σ}
(3.65)

with one of the two chairs being chosen non-deterministically. The second
tick then occurs, leading in to stage five and the most interesting part of the
model.

room[0 | chair[0]CB | σ.MP | σ.MP | GM3]Ω{σ}
σ

−→ room[0 | chair[0]CB | MP | MP | GM4]Ω{σ}
(3.66)

The aim of stage five is to get as many player processes as possible inside
chair localities. This is handled by again relying on maximal progress to
essentially perform a form of broadcast that centres on mobile actions, as
briefly mentioned in 3.3.2. Rather than sending a signal to a number of
recipients, a request to move into a chair (see (3.56) and (3.59)) is delivered
instead.

If a chair is available, then a player process will enter it (the actual chair
and player chosen is non-deterministic). This will cause an internal action
to occur, which takes precedence over the clock tick. Thus, when the clock
eventually does tick, it is clear that no more players can enter chairs. Using
clocks in this manner makes the system compositional ; in contrast to other
models, players and chairs can be added without requiring changes to the
process definitions. In this running example, there are two players, but only
one chair, which results in a single τ transition:

room[0 | chair[0]CB | MP | MP | GM4]Ω{σ}
τ

−→ room[0 | chair[0 | PIC]out.CB | MP | GM4]Ω{σ}
(3.67)

that causes one of the MP processes to move in to a chair, and become a
PIC process. This is followed by the σ transition, which marks the move to
stage six.

room[0 | chair[0 | PIC]out.CB | MP | GM4]Ω{σ}
σ

−→ room[0 | chair[0 | σ.PLC]out.CB | L | GM5]Ω{σ}
(3.68)

Both stage six and seven proceed in a similar way. Stage six sees es-
sentially the same broadcasting behaviour applied to the losing players (see
(3.57) and (3.62)). The difference is that stage six demonstrates something
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which wouldn’t be possible without mobility: the broadcast is limited to
those player processes which remain in the room. As communication be-
tween processes in different localities is disallowed in TNT, an implicit scop-
ing of the broadcast occurs. In the example, stage six again sees just one τ
transition:

room[0 | chair[0 | σ.PLC]out.CB | L | GM5]Ω{σ}
τ

−→ room[0 | chair[0 | σ.PLC]out.CB | GM5]Ω{σ}
(3.69)

which results in the remaining MP (now a losing process, L) moving to the
sin bin. Due to space constraints, the sin bin locality is not shown in the
above derivations. It may be factored in to the above as follows:

sinbin[0]SB | L | GM6
τ

−→sinbin[0 | 0]SB | GM6
(3.70)

where the L process evolves to become a simple 0 process. The broadcast is
again terminated by a tick from σ,

room[0 | chair[0 | σ.PLC]out.CB | GM5]Ω{σ}
σ

−→ room[0 | chair[0 | PLC]out.CB | GM1]Ω{σ}
(3.71)

which, in this case, also signifies the music starting up again. The remaining
players leave their chairs:

room[0 | chair[0 | PLC]out.CB | GM1]Ω{σ}
τ

−→ room[0 | chair[0 | 0]CB | GM1 | P ]Ω{σ}
(3.72)

and the system essentially returns to the beginning, with n − 1 chairs and
n − 1 players.

3.6 The Type System

This final section focuses on the beginnings of a type system for the calculus.
The concepts behind this are based on the type systems presented for the
ambient calculus (see 2.4.2) and specifically the notion of groups presented in
[12] and [17]. The current focus is on further restricting mobility, this time
limiting which process may move rather than how many, as is implied by
the bouncers of 3.3.3. The type system also provides the distinction between
normal process primitives and the primitives used by bouncers, which is
implicit in the examples above.
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Table 3.7: Types: Basics

Env
ξ : T ∈ Γ

Γ ⊢ ξ : T
Nil

−

Γ ⊢ 0 : Proc(g)

BNil
−

Γ ⊢ Ω : BProc
Stop

−

Γ ⊢ ∆ : Proc(g)

Stall
Γ ⊢ σ : Clock

Γ ⊢ ∆σ : Proc(g)
Act

Γ ⊢ α : Act, Γ ⊢ P : Proc(g)

Γ ⊢ α.P : Proc(g)

Rec
Γ ⊢ P : Proc(g)

Γ ⊢ µX.P : Proc(g)
Res

Γ ⊢ a : Act, Γ ⊢ P : Proc(g)

Γ ⊢ P \ a : Proc(g)

Each process and locality is a member of a group, which determines the
use of the mobility primitives. Each group has a type5, (C ,S ,O,E ), with
each element being a set of group names. Entities in groups that are members
of C are allowed to cross or pass through localities in the given group. For
example, if g1 has type G1, where g2 ∈ C (G1), then localities or processes in
group g2 may cross through localities in g1. In the same way, S is the set of
groups that may stay in a locality of that group. This is implicitly a subset
of C as, if an entity can reside permanently in a locality, it must also be
able to simply pass through it as well. Finally, O contains the groups whose
members may destroy the locality via the open primitive, and E those whose
localities moving processes may enter.

Table 3.7 presents the basic rules and the rudimentary types used for the
basic parts of the syntax, such as 0. As is standard in the literature, the
types are defined with respect to a type environment, Γ. On this note, the
rule Env simply states that if ξ of type T is a member of Γ, then a typing
derivation ⊢ ξ : T may be made in the context of Γ. This forms the basis of
all later rules.

The remaining rules in Table 3.7 provide types for the processes. Via Nil
and Stop, both 0 and ∆ are given a type of Proc(g), where g is a group.
There are no preconditions for these derivations. Likewise, Ω can be typed as
a BProc, a bouncer process, thus distinguishing it from the normal processes,
such as 0.

The other rules are also pretty simple. Stall simply says that ∆σ may

5Or, more accurately, as groups are types themselves, it essentially has a type of a type
or a kind
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Table 3.8: Types: Operators

Sum
Γ1 ⊢ P : Proc(g), Γ2 ⊢ Q : Proc(g), Γ1#Γ2

Γ1 ∪ Γ2 ⊢ P + Q : Proc(g)

Par
Γ1 ⊢ P : Proc(g), Γ2 ⊢ Q : Proc(g), Γ1#Γ2

Γ1 ∪ Γ2 ⊢ P | Q : Proc(g)

FTO
Γ1 ⊢ P : Proc(g), Γ2 ⊢ Q : Proc(g), Γ1#Γ2, Γ1 ∪ Γ2 ⊢ σ : Clock

Γ1 ∪ Γ2 ⊢ ⌊P ⌋σ(Q) : Proc(g)

STO
Γ1 ⊢ P : Proc(g), Γ2 ⊢ Q : Proc(g), Γ1#Γ2, Γ1 ∪ Γ2 ⊢ σ : Clock

Γ1 ∪ Γ2 ⊢ ⌈P ⌉σ(Q) : Proc(g)

be typed as a process of group g if σ is a clock. Act states that α.P is a
process in g if α is an action and P is also typeable as a process in the same
group. In the same vein, Rec and Res type recursive and restricted processes
respectively, if the constituent process, P , is already typeable as a process.
In the case of Res, a must also be an action if the process is to be successfully
typed.

In Table 3.8, types are given to the composition of processes using the
binary operators for summation, parallel composition and timeout. All four
are pretty much identical, providing a type for the process resulting from the
combination of the operator with two other processes, P and Q. As each of
these processes may be typed under a different type environment (represented
by Γ1 and Γ2), the cumulative process is typed under the union of the two,
on the condition that the two are compatible (Γ1#Γ2). Compatibility is
possible if there is no overlap between the two environments. Such overlap
occurs when the environments provide a different type for the same entity.

The only other issue worthy of note with respect to these rules is that
FTO and STO also require that σ is typeable as a clock, another restriction
which simply makes explicit a number of issues implied in the syntax.

The types in Tables 3.7 and 3.8 provide the basis for the mobility types
presented in Table 3.9, which form the focus of the type system. This table
is so far incomplete, as it lacks typing for process mobility and the rule to
link processes and localities. The latter exists, but may need further work.
These issues are discussed in 4.1.

Of the ones presented here, LocIn, LocOut and Open are fairly similar,
all relating to whether a particular location movement is typeable, based on
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Table 3.9: Types: Mobility

Cap
Γ ⊢ M : Proc(g1) → Proc(g2), Γ ⊢ P : Proc(g1)

Γ ⊢ M.P : Proc(g2)

LocIn
Γ ⊢ g2 : G2, Γ ⊢ m : Loc(g1), g1 ∈ C (G2)

Γ ⊢ in m : Proc(g2) → Proc(g2)

LocOut
Γ ⊢ g1 : G1, Γ ⊢ g2 : G2, Γ ⊢ m : Loc(g1), g1 ∈ C (G2),S (G1) ⊆ S (G2)

Γ ⊢ out m : Proc(g2) → Proc(g2)

Open
Γ ⊢ g1 : G1, Γ ⊢ g2 : G2, Γ ⊢ m : Loc(g1), g1 ∈ O(G2), g2 ∈ S (G1)

Γ ⊢ open m : Proc(g2) → Proc(g2)

the groups of the localities and the processes within them. Cap differs in
that it provides the actual change in type that occurs when the movement
takes place. Its behaviour is akin to function composition.

Within the type system, mobility primitives are given function types,
to represent the fact that they may cause a transition from one group to
another6. The rule itself simply states that if M has a function type, trans-
forming processes of the group g1 to a process in the group g2, and P is a
process in group g1, then M.P is typed as the result of applying M to P ,
to give a process in group g2.

The function types used for this are generated by rules like LocIn, LocOut
and Open, which are specific to each mobility primitive. LocIn states that if
m is a locality of group g1, then in m is typeable as Proc(g2) → Proc(g2) if
the group g1 is one of the members of the set of crossable localities maintained
by G2, the type of the group, g2, used by the process emitting the capability.

The other two rules run along the same lines. LocOut is nearly the same,
except that the set of locality groups where members of g1 can stay must be a
subset of the set in which members of g2 can stay. This is because the moving
locality, in g1, must be able to stay in the locality in which m (a member
of g2) is currently situated, when it moves outside it. Such a restriction is
unnecessary for LocIn as it is implied by the fact that C (G) ⊆ S (G), as
mentioned earlier.

Finally, the rule for Open states that g1, the group of the locality being

6This is not evident in the rules given, as the processes move as part of the locality,
and thus stay in the same group. Such changes occur in process movement, where the
locality of a process changes, and thus its group.
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opened, must be a member of the set of groups that are openable by members
of g2 and that g2 must be a member of the set of groups that can stay in
localities of group g1. The latter condition is necessary to ensure that the
contents of the destroyed locality are allowed to enter the parent locality.
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Chapter 4

Future Work

This chapter briefly discusses future work on the calculus, with regard to both
the theoretical aspects (sections 4.1 and 4.2) and its applications (section 4.3).

4.1 The Type System

The type system presented in 3.6 is still incomplete. Specifically, as previ-
ously mentioned, it lacks rules for handling process mobility and the associ-
ation between localities and processes.

A possible formalisation of the latter is given in Table 4.1. The locality
is a member of group g, while the process is a member of group g′. The two
are unified by the requirement that g′ be a member of the set of groups that
can stay in localities of group g, giving a final typing of Loc(g′).

The rule also requires that B is a bouncer process. Absent from the
rule is the handling of the set of clocks. Ideally, the restriction should be
something along the lines of {Γ ⊢ σ : Clock | σ ∈ ~σ}, stating that every
element of the vector, ~σ, is a clock. But it is presently unclear whether this
is an appropriate way of handling this requirement.

The task of handling process mobility is more tricky. Objective mobility is
the issue, as the process which emits the mobility primitive is not the process

Table 4.1: Types: Linking Processes to Localities

Loc
Γ ⊢ m : Loc(g), Γ ⊢ P : Proc(g′), Γ ⊢ B : BProc, Γ ⊢ g : G, g′ ∈ S (G)

Γ ⊢ m[P ]B{~σ} : Loc(g′)
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which moves and thus its type doesn’t change either. Instead, the process
which does move is only recognisable by its provision of a corresponding
action. This seems to imply that a more complex way of handling actions is
required. Another issue is how groups are to be allocated to processes and
localities. It may be necessary to add a form of type annotation or a group
binder (e.g. (νG); see 2.4.2), as in the type systems based on the ambient
calculus.

On a more general note, it would be interesting to consider further the
typing of both actions and clocks. At present, they just have the simplest of
types, but this could be extended to provide more interesting behaviour. Sim-
ilarly, bouncers only have rudimentary types and may possibly be changed
to include more detail.

4.2 Equivalence

The main element lacking in the current version of TNT is some notion
of equivalence. An equivalence notion is necessary to be able to compare
processes, with the additional benefit of being able to reduce them to a
simpler form.

Equivalence falls under two areas. The first is structural congruence
(4.2.1), which is present in many distributed calculi such as the π calcu-
lus and the ambient calculus. The second area is bisimulation (4.2.2) and
specifically, the extension of the temporal observation bisimulation congru-
ence given for CaSE.

4.2.1 Structural Congruence

The semantics of TNT, specifically those in Table 3.1 in section 3.4, may
benefit from a notion of structural congruence. A structural congruence re-
lationship allows the rearrangement of the structure of a process by deeming
the two to be equivalent. A clear example of where this would be advanta-
geous with the current semantics is the rules for summation given in Table
4.2.

The only difference between the two rules is the side of the summation on
which the α transition occurs. A structural congruence rule along the lines
of:

E + F ≡ E + F (4.1)

would remove the need for one of these rules and make clear the commutative
nature of the operator. The same is true of the parallel composition operator,
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Table 4.2: Semantics: Summation

Sum1
E

α
→ E ′

E + F
α
→ E ′

Sum2
F

α
→ F ′

E + F
α
→ F ′

Table 4.3: Semantics: Structural Congruence

SCong
E ≡ E ′, E ′ γ

→ F ′, F ′ ≡ F

E
γ
→ F

which again has two rules, Par1 and Par2.
Another common role for structural congruence is to remove unneeded

elements. In many calculi, 0 is removed in this way. For example, the
ambient calculus has a structural congruence rule of the form

E | 0 ≡ E (4.2)

which removes the superfluous 0. However, as was discussed in 3.3, this is
more problematic in CaSE and TNT, where 0 is not without behaviour (or,
more specifically, transitions). Such a rule would however be very useful,
as many of the examples in the previous chapter run in to problems with
superfluous 0 processes appearing.

Any structural congruence relationship defined needs to integrate with
the existing semantics to be useful. Table 4.3 gives an additional rule which
shows how the structural congruence interacts with transitions. If a process
E ′ can perform any action, γ, and become F ′, while both E ′ and F ′ are
structurally congruent to E and F respectively, then the same transition
may occur from E to F .

4.2.2 Bisimulation

Any bisimulation theory for TNT will be based on the labelled transition
system defined by the semantics. In particular, the semantics share a lot in
common with those of CaSE, for which a form of bisimulation-based equiva-
lence (temporal observation congruence) already exists. With respect to the
changes involved in TNT, the additional transitions provided by the mobility

81



primitives are all silent actions, which are discarded by an observation-based
congruence. As a result, it is unclear what changes will actually be neces-
sary to provide the same behavioural theory for TNT as is defined by this
congruence for CaSE.

Mobility affects the topology of the process, and thus the difference be-
tween two processes which exhibit mobility is much clearer via a structural
comparison. Hence, structural congruence may end up being more important
with respect to the addition of mobility.

4.3 Applications

The primary application of TNT will be biological modelling. This is an
area where physical location is important and mobility is realised as shifts
in topological composition. Nested structures are important, being clearly
present in, for example, cell membranes. Within the literature, models of a
similar style have already been applied, including Cardelli’s brane calculi [10]
and the membrane computing of P systems (see section 2.3.2). This will also
be an interesting area to consider in terms of diversity, providing a pleasant
contrast to the more theoretical notions implicit in designing the calculus
itself.

One particular case study that is already being considered is that of quo-
rum sensing (see section 2.5). In brief, this focuses on the reactive behaviour
of bacteria in relation to the current level of concentration of a particular
gene. The multi-party synchronisation implicit in TNT is likely to be useful
in this area.

In modelling this, it is expected that additions will be made to the calculus
to allow the use of probabilistic derivation, akin to the use of the stochastic
π calculus and the Gillespie algorithm in similar studies (see section 2.5). In
particular, this will hopefully allow simulations to be run and the behaviour
of the model to be analysed.

In the longer term, probably outside the scope of this thesis, there may
be other domains in which TNT will find applicability. Pervasive computing
is thought to be one such area, and this may make more effective use of
the type system than biological modelling. In addition, its relation to P
systems (2.3.2) and the ability to encode it using a bigraph (2.3.2) would
form interesting areas of study.
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