
A Framework for Mobile Java Applications

Andrew Hughes
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street
Sheffield, UK

S1 4DP
andrew@dcs.shef.ac.uk

ABSTRACT
We present the Dynamic Theory Execution (DynamiTE)
framework for creating concurrent object-oriented applica-
tions, with semantics grounded in a process calculus. Dyna-
miTE allows a system to be constructed as a series of distinct
mobile components called environs which can change posi-
tion during execution, and between which individual pro-
cesses can migrate.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; D.1.3 [Programming Tech-

niques]: Concurrent Programming; D.1.5 [Programming

Techniques]: Object-oriented Programming

General Terms
Design

Keywords
Java, Mobility, Process Calculus, CCS, Ambient Calculus,
CaSE, TNT

1. INTRODUCTION
At an implementation level, concurrent systems tend to

be designed in a very ad-hoc way, resulting in complex con-
cepts such as interprocess communication and code migra-
tion becoming difficult to manage and control. DynamiTE
provides a framework which abstracts away the implemen-
tation details of such concepts, allowing the programmer to
concentrate instead on a set of simpler constructs grounded
in the formal theory of the process calculus, TNT. In this
paper, we first present an overview of TNT (section 2)1,
before looking at how its concepts are implemented within

1The reader is refered to the cited papers for the exact se-
mantics and examples, as space is limited here

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Ja4Mo Workshop/PPPJ 2007, Sep. 5–7, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-672-1/07/0009 ...$5.00.

DynamiTE (section 3) and closing with a consideration of
related and future work.

2. THE THEORETICAL BACKBONE
DynamiTE is based on the process calculus TNT (Typed

Nomadic Time) [2, 3], which provides a formal abstraction of
concurrent process behaviour. Using this theoretical frame-
work, a thread of execution can be described as a series
of sequential actions which incorporates internal behaviour,
interprocess communication (2.1), multiprocess synchroni-
sation (2.2) and mobility (2.3, 2.4). TNT utilises and com-
bines well-established concepts from existing process calculi,
including synchronisation from Milner’s CCS [5], mobility
from Cardelli and Gordon’s Ambient Calculus [1] and global
discrete time from Norton, Lüttgen and Mendler’s CaSE [7].

Take the following example process, a.τ.b.0. The . oper-
ator is used to prefix a process with an action and is used
repetitively to form a complete description of the behaviour
of a process. In a formal syntactic definition, this is written
a.P to denote an action a followed by another process, P ,
which may itself be of the form a.P . This example states
that three actions should be performed, a, τ and then b be-
fore the process evolves into the predefined 0 process, which
represents a process with no explicit behaviour2.

We generally classify such actions by their observability.
The action with the name τ is special, as it denotes ar-
bitrary internal behaviour. Other actions (a and b in the
above example) are observable; generally, when comparing
two processes, it is usual only to match on such observable
behaviour, and discount internal activity.

Such sequential behaviour can be made more interesting
by introducing non-deterministic behaviour via three control
flow operators, +, ⌊P ⌋σ(Q) and ⌈P ⌉σ(Q). The first of these,
+, is a basic choice operator inherited from CCS. When
two processes, P and Q, are connected by this operator, a
non-deterministic choice will be made which causes one to
execute and the other to be lost. From the process, a.P +b.Q
either an a or b action may be performed. Where the action
is a, we are left simply with the process P . Likewise, if b is
executed, Q remains.

The other two operators interact with TNT’s notion of
global discrete time, realised by clock signals. Such signals
are emitted in situations where they can not be pre-empted
by the presence of a high-priority action such as τ . All other
action prefixes and the 0 process can idle, while the clock
ticks, representing the passage of time. The two timeout

2It still exhibits some behaviour, as it can idle over time.

operators allow processes to respond to the ticks of a specific
clock, the left-hand process executing if the clock does not
emit a signal and the right-hand executing if it does. In
⌊a.P ⌋σ(b.Q), we are left with b.Q if the clock σ ticks. If it
doesn’t, then an a action occurs instead and the resulting
process is simply P .

TNT provides two timeout operators, which have differ-
ent behaviour with respect to processes idling. The above
example uses the fragile variant, where, if the left-hand side
(a.P) can idle over another clock, the ticks of the other clock
are treated like actions and cause the process to evolve to
become P . The alternate stable operator ⌈P ⌉σ(Q) lets the
timeout stay in place; it is only removed when an explicit
action from P occurs or σ ticks.

A clock may be prevented from ticking by using the ∆σ op-
erator. More generally, ∆ stops all clocks. This transcends
up through the binary operators, + and | (introduced be-
low), as they require the constituent processes to both be
able to idle in order for the resulting process to do so. For
example, σ may not tick over a.0 + ∆σ.

Finally, a process can also be defined with recursive be-
haviour. The process, µX.a.X repeatedly produces a ac-
tions. This is achieved by the appearance of µX which
binds the variable, X, to the content appearing after the
X.. When X occurs in the process body, it results in a
substitution. More simply put, when the a action in this
example is performed, the process will become simply X.
This is then replaced by its value, a.X, allowing another a
action to occur and so on.

2.1 Interprocess Communication
The constructs we describe above are fine for specifying

sequential systems, but the main focus of process calculi is
to provide an abstract representation of concurrent systems.
TNT, and its predecessors, make provision for this via the
parallel composition operator, |. When two processes, P and
Q are joined with this operator, they are said to execute
concurrently.

The actual concurrent operation of the two processes is re-
alised through interleaving. A process a.P | b.Q will evolve
into one of two possible processes, P | b.Q or a.P | Q, by
performing either the a or b action respectively. Thus, the
behaviour of | is just like that of +, except that both sides re-
main in place, since this represents two concurrent processes
rather than a control branch in a single process.

With this mechanism, we can represent two orthogonal
processes running at the same time and the different per-
mutations of action sequences possible from applying an in-
terleaved semantics to concurrency. However, to represent
truly interesting behaviour, we need to also allow the pro-
cesses to interact. Action naming again becomes significant
here, as we assume that two processes interact if they emit
a corresponding pair of actions simultaneously.

We’ve tended to use actions named a and b above. One of
the reasons for this is that these two actions don’t pair up.
An action a can only pair up with a corresponding co-action,
a. It is common to see the name a as being a reference to a
channel a, with the action a being an input and a being the
output. Indeed, this is how they are used within DynamiTE.

A process such as a.P | a.Q can evolve to P | a.Q or
a.P | Q, just as we saw above. However, as a and a are
both available at the same time, the two processes can syn-
chronise, causing both processes to evolve in one step to

P | Q. Such behaviour can be enforced by restricting the
scope of the name a. In the process, (a.P | a.Q)/{a}, ac-
tions involving a (both a and a) can only be observed within
the brackets due to the presence of the restriction operator,
/{a}. As a result, the two are forced to synchronise with
each other.

2.2 Process Synchronisation
Synchronisation is a fundamental part of the calculus, and

observable actions, in practise, are used for this purpose.
Thus, actions should be restricted at appropriate points
to enforce this behaviour. Clearly, combinatorial explosion
may result if restriction is not appropriately applied, as each
pair of actions will produce three alternatives, rather than
one deterministic action.

Another pertinent point is that synchronisation emits an
internal action. Recall the behaviour of clocks described
above; clock ticks are pre-empted by such internal actions
and so communication also takes precedence over time pro-
gression. This puts process interaction on an equal footing
with the internal behaviour of a single process.

This synergy of process synchronisation and time is in-
teresting, because it allows us to effectively detect when all
possible interactions have taken place. A classic example of
this is when a process wants to broadcast to an arbitrary
number of recipients. How can we construct such a process,
given what we’ve seen above?

The obvious solution is for the process to output on the
channel just the required number of times. However, this
doesn’t give a flexible solution which can handle an arbitrary
number. Instead of having a general broadcast agent, we
have a process that can transmit to three processes (o.o.o.P)
and we need a new one for transmitting to four (o.o.o.o.P).

Alternatively, we can define the process using our recur-
sion operator, µX.o.X. This, of course, works for any num-
ber of recipients, but is fundamentally flawed. What hap-
pens when no-one wants to receive on o any more? This
process will still go on providing an output; note that there
is no P process in this version, because the process never
continues on to do something else. In a practical implemen-
tation, this corresponds to a thread that never terminates.

The solution is to utilise the timeout operator to provide
a base case for the recursion. When o can synchronise with
a recipient, o, the resulting internal action, τ , will stop the
clock from ticking. Thus, when the clock does tick, it demon-
strates that no further synchronisations can take place and
so our broadcast agent can go and do something else, which
we simply refer to as P . Formally, this is written as

µX.⌈o.X⌉σ(P) | o.Q | o.R

where o.Q and o.R are two recipients. We can trivially add
more, as prior knowledge of the recipients is no longer re-
quired. If any process is listening on o, a synchronisation
will take place between it and the broadcast agent. The
broadcast agent will then recurse, recreating the original
situation with one less recipient. When there are no further
recipients, σ will be allowed to tick, causing the broadcast
agent to evolve into P .

Such a n-ary process synchronisation mechanism is be-
lieved to be novel within the field of mobile process calculi,
originating from a non-mobile process calculus (CaSE) and
being extended within TNT.

2.3 Structural Mobility
The interactions described so far are all localised. Mobil-

ity in TNT is realised by a hierarchy of locations we refer
to as environs. Processes reside within these environs, and
their interaction is limited to within their bounds. Environs
also restrict the behaviour of clocks. Each environ has an
associated set of clocks, which can tick within that environ
and any sub-environs. Outside the environ’s bounds, the
clock ticks are transformed into internal actions, which then
pre-empt the ticks of any clock further up the hierarchy.

Environs are given a name and a security policy in the
form of a special ‘bouncer’3 process. Syntactically, they ap-
pear as

m[0]6.7.Ω

{σ}

The environ is called m4 and contains the simple process, 0.
The clock σ may tick within the bounds of m, but such ticks
appear as internal actions outside. The sequence 6.7.Ω
represents the bouncer process, which restricts the usage of
mobility primitives with respect to m.

These mobility primitives are provided through further
syntactic constructs, three of which allow the hierarchy to
change during execution and two that allow processes to
move (see 2.4). All five must pair up with a corresponding
co-primitive (in much the same way as actions match co-
actions) provided by the bouncer of the environ concerned.
In doing so, they emit a high-priority action, which, like
internal actions, pre-empts clock ticks. This allows mobility
primitives to be used in a broadcast style, in the same way
as we used actions in section 2.2.

Such behaviour is best demonstrated by example. In the
following process,

n[6m.P]Ω∅ | m[0]6.7.Ω

{σ}

6m instructs the surrounding environ n to attempt to move
inside its sibling, m. It may only do so if the bouncer of m
provides the corresponding co-primitive 6. This is true in
the above, where n[6m.P]Ω∅ may move inside the environ m
and continue as n[P]Ω∅ within this new environment. This
results in

m[0 | n[P]Ω∅]7.Ω

{σ}

7m provides the opposite behaviour, allowing the sur-
rounding environ to leave m, a parent environ. If we as-
sume P in the above expands to 7m.P ′, then the process
can again interact with the bouncer and cause n to move
outside m, giving

n[P ′]Ω∅ | m[0]Ω{σ}

which is fairly close to the original process, the exception
being that 6m.P has evolved into P ′ and the bouncer has
become simply Ω. Note that Ω is the equivalent of 0 for
bouncers, and so no further mobility interactions can involve
m, making it immobile (this is the case with the bouncer of
n from the start).

Clearly, via these two primitives, the hierarchy may be
rearranged arbitrarily. The final structural primitive allows

3Named after the staff who restrict access to a night club.
American usage: doorman/woman.
4Names may be of any length, but we prefer single letters
for formal representations to maintain brevity. The same
also applies to channel names.

environs to be removed completely5. Again, such an op-
eration must be permitted by the bouncer of the environ.
This prevents arbitrary destruction of environs. Instead, an
environ must effectively be defined as removable on creation.

A bouncer exhibiting the co-action � allows an environ to
be destroyed. When an ambient with such a bouncer is run
in parallel with the process �m.P , as in

�m.P | m[Q]�.Ω

{σ}

the environ m will disappear and the process inside will enter
the environ above giving

P | Q

The bouncer of the removed environ is simply lost. The
clock set is unified with the clock set of the parent environ,
so the operation effects both Q (now executing in a different
context) and P (which can now see the ticks of any clock
previously hidden inside m).

2.4 Process Mobility
The final feature of TNT is process mobility. Unlike the

structural mobility described above, this is objective; the
process which exhibits the mobility primitive does not move
itself, but instead causes another process to move. The mi-
grating process is determined by matching the action name
mentioned in the mobility primitive with one emitted by
another process. Consider the composition

on a 6 m.P | a.Q | m[0]6.7.Ω

{σ}

where the first process may perform on a 6 m, causing the
second to move,

P | m[0 | Q]7.Ω

{σ}

its continuation Q now evolving inside the environ m.
Subjective movement can still be performed by forking a

process in two. For example, suppose Q diverges to become
b.Q′ | on leave 7 m.0, where the process on the right moves
the one on the left outside m. This then allows the inverse
operation to be performed subjectively,

P | Q′ | m[0 | 0]Ω{σ}

to again give a final process which is very similar to the
original.

To summarise, the full syntax of TNT is presented below:

E ,F ::= 0 | Ω | ∆ | ∆σ | α.E | E + F | E |F | ⌊E⌋σ(F) |

⌈E⌉σ(F) | µX.E | X | E \ A | m[E]F~σ | M.E

M ::= 6 m | 7m | �m | on β 6 m | on β 7 m |

6 | 7 | �

3. MAPPING THEORY TO PRACTICALITY
DynamiTE uses the TNT process calculus described above

as the basis for a concurrent object-oriented framework.
Within this framework, developers can create concurrent
applications simply by implementing the specific behaviour
they require in appropriate subclasses. Each syntactic con-
struct is mapped to an appropriate Java class, which pro-
vides the required functionality and relates to others via a

5The opposite of this, creating an environ, is achieved by
simply evolving a process into a new environ e.g. a.b.n[P]Ωσ

common Process superclass. Operation follows a top-down
approach; the complete system is represented by a single
instance of one of these classes which, in most cases, will
be an operator that composes together further instances as
appropriate.

The simplest Process subclass is the representation of 0,
realised as a class Nil which provides process termination.
The internal action τ is realised as an abstract class Tau and
this is where the user can implement arbitrary sequential be-
haviour as required, by providing a subclass. The observable
actions form part of the channel subsystem, described in 3.1.

The + operator is implemented as a class which contains a
list of subprocesses from which one is chosen at random. The
action to perform is computed by traversing the hierarchy,
so restriction is simply a matter of providing appropriate fil-
tering, thus preventing the restricted names from travelling
further up the hierarchy.

More interesting is the Par class which implements the |
operator, as it must allow its subprocesses to operate concur-
rently. The most obvious way to achieve this is by mapping
individual processes onto Java threads. This also means that
data can be stored with the process by means of thread-local
variables. However, we are keen to offer flexibility in how
the individual features of the framework are implemented.
Java thread mapping is only one way in which concurrent
processing may be implemented and so we abstract away
Par from the threading implementation as much as possible,
thus allowing it to be replaced by other implementations at
a later date. For example, concurrent processing could also
be provided by distinct processes spawned by the VM or a
more complex distributed solution may become apparent.

3.1 The Channel Abstraction
In the same vein, the implementation of synchronisation

channels is abstracted in such as way as to allow for dif-
fering implementations. Here, the provision of multiple im-
plementations is more prevalent and so a plugin mechanism
is already present. Fortunately, Java already has plenty of
support for plugin based frameworks (imaging and sound
already being implemented in this fashion) and the new
java.util.ServiceLoader API provided in 1.6 makes this
simpler still. This allows the user to have freedom of choice
with respect to their chosen channel implementation, which
may even be further extended by their own or third-party
plugins.

At its simplest, DynamiTE provides a way of testing TNT
processes and ensuring they perform as expected. In this
respect, the simplest channel plugin is a dummy channel,
which need do nothing more than simply exist. More com-
plex solutions are of course possible and are needed to make
the framework both usable and interesting.

Although currently there is no realisation of data within
the formal layer of the calculus, this only matters to the ex-
tent that we wish transmitted data to alter the constructs
themselves via substitution6. Data can be transferred be-
tween processes and used within internal actions without
having to be explicitly realised at the formal level. There are
a multitude of ways of implementing data transfer, ranging

6The π calculus [6] is an obvious example of such behaviour,
which goes to the extreme of not only allowing data to be
transferred but also references to channels which can then
later be used in the language constructs. This, in essence,
provides the form of mobility present in the π calculus.

from simple mechanisms like files and sockets to more full-
blown interprocess communication protocols such as Java’s
Remote Method Invocation (RMI), the Common Object Re-
quest Broker Architecture (CORBA) and web services. The
plugin nature of the channel architecture means that any of
these possibilities may be used and more besides.

While the implementations of the channels themselves can
provide the input and output mechanisms, interoperability
between the two has to take place at a higher level. Thus, the
onus is on the parallel implementation, Par, to co-ordinate
the communication between the two, by virtue of discovering
which names are exposed at the point of composition.

A possible simplification becomes apparent here, as some
implementations may make use of channel naming. For ex-
ample, if the channel name refers to a host and port for a
TCP/IP implementation, then the sender need only try and
connect to see if a recipient is available. Channel names are
assumed to be unique, so such a mapping is possible. How-
ever, they are not unique to a particular process, making it
perfectly plausible for the channel name to occur simulta-
neously on multiple processes and thus for a competition to
occur. There is also the issue of whether they can actually
‘see’ each other, according to the constraints of the calculus,
so the decision should still be left to an appropriate parallel
composition operator.

3.2 Signalling
One of the most interesting parts of the DynamiTE frame-

work is the implementation of clock signals. While there
have been other attempts to produce frameworks or lan-
guages based on process calculi (see section 4), we believe
that the rendering of discrete time into such a context is
novel.

The first question to answer when attempting to perform
such a translation is where to actually locate the clocks.
Within TNT, the obvious answer is within each environ,
as these are responsible for providing the division between
processes which can observe clock ticks and those which can
not. For example, the following environ

m[P]Ω{σ}

would be realised as an instance of the Environ class with
the name m. This instance would maintain a reference to the
process P with which it interacts. Not only is the execution
of P controlled by the environ (as with the implementations
of + and | above), but it also controls when and how the
ticks of σ reach P .

Recall our earlier description of the calculus, where we
mentioned how clock ticks are always pre-empted by high
priority actions, which may arise either from explicit internal
actions denoted by τ , implicit internal actions caused by
synchronisation or movement. So, in order for the environ
to know whether to propagate a clock tick to the process, it
must first probe it to find out whether such a high priority
action is pending. Clock ticks may also be prevented by the
∆ and ∆sigma constructs, so these must also be checked
for.

Both can actually be achieved in one transaction by mak-
ing the probe the clock tick. The clock tick is sent down
the process hierarchy until it reaches a point at which a de-
cision can be made as to whether the tick should occur or
not. If the tick can occur, it is propagated back up the hier-
archy, eventually stopping when it reaches its host environ

again. The host environ can be determined by the set of
clocks associated with each environ, which is also used to
calculate the signals to be propagated initially. If the clock
is not allowed to tick, then the actual action performed is
sent instead.

This algorithm is best explained by a couple of prototyp-
ical examples. First, consider

m[a.0 + b.0]Ω{σ}

where the process inside m has no τ actions, synchronisa-
tions, mobility or clock stop operators, and thus clearly al-
lows the clock σ to tick. The environ m iterates over its
set of clocks (here just σ), and sends a tick from each to its
process, a.0 + b.0.

This process is realised by an instance of the Sum class,
which composes the two processes together. A clock can
only tick over the summation operator if it can tick over
both sides, so the result from this instance is simply the
result of combining the return value from probing each of
the constituent processes.

Both a.0 and b.0 are implemented using instances of the
Prefix class, which composes a Channel7 or Tau instance
(unified by the Action class) with another instance of a Pro-

cess subclass. In determining whether a clock can tick, it
first checks that the action is a channel rather than a Tau

instance (which would pre-empt the clock), and then probes
the Process instance. In both these simple cases, this is an
instance of Nil, which allows clock ticks.

Having determined that the clock may tick, each nested
call returns with the σ clock tick, thus propagating it up
to the original call in the environ m. Having seen how this
operates for a process that can tick, it is simple to see how
it differs when something prevents the clock from ticking. If
any part of the query returns something other than a clock
tick, this will be propagated upwards in preference.

Consider what happens if a.0 is changed to τ.0. The left-
hand side of the summation will receive the τ action from
the Prefix instance, which then takes priority over the σ
from the right-hand side and is propagated to the environ,
m. This is the case in any situation where the σ is required
to compete against an action, a τ or a mobility primitive.
The clock stop operators behave slightly differently in that
they don’t replace the action, but instead mark the σ action
as stopped.

Note that a similar method of determining the presence
of clock ticks must take place to handle the STimeout and
FTimeout classes. Both sides of the timeout are inspected,
and behaviour determined as follows:

1. If the left-hand side can perform a high-priority action,
it will be allowed to proceed and the right-hand side
need not be considered.

2. Otherwise, the possible actions include unpaired ac-
tions (such as a and b) and clock ticks (both from the
clock involved in the timeout and from other clocks),
one of which is chosen to be performed.

3. Once the chosen action has been performed, the time-
out instance will be replaced as appropriate (see sec-
tion 2).

7An abstract class, instances of which are provided by the
channel architecture described in 3.1

3.3 Structural Changes
The Environ class also places a central role in providing

system structure. In section 2.3, we described how processes
are organised into environs and the way communication is
limited to its bounds. Within DynamiTE, one possible use of
environs is to map them to physical or virtual hosts. While
a simple testing solution can execute the entire system on a
single platform, environs provide a natural form of process
distribution which can be leveraged by the framework.

This does however give the initial impression that struc-
tural mobility will become very inefficient, if hosts are ex-
pected to interact to determine the feasibility of a move and
then actually change position during execution. In reality,
these issues are minimal. An inward movement is always
in relation to a sibling, while an outward movement con-
cerns some parent environ. As the structure of environs is
expected to closely match the actual physical structure of
the hosts, such interactions should be relatively low cost to
perform. Also, a structural movement does not change the
contents of the moving environ, only its context. Thus, only
later communication with surrounding environs is affected.
For example, it may have been able to see a sibling environ
before the movement, but is now inside this environ and can
receive clock ticks emitted by it.

If hosts do not physically move, then what is the point
in allowing such structural changes? The change in clock
signalling just mentioned is one effect. In addition, we also
make provision for contextual data to be stored at the en-
viron level, in addition to that stored local to a particular
thread, and transferred via channels. This gives additional
purpose to the use of structural mobility and process migra-
tion, which we describe next.

3.4 Migration
The final aspect of DynamiTE that we describe here is the

migration of a process from one environ to another, which
occurs both as a result of using one of the process mobility
operators and from the behaviour of �. This is perhaps one
of the most interesting aspects, as it represents the move-
ment of code from one environment to another, possibly lo-
cated in a different physical location.

Migrating an active process is not a simple operation. Not
only must any remaining code to be executed be transferred,
but any local data must also migrate. TNT does allow us
to achieve a significant amount of simplification here. The
transferred process is already separated from other code
within the system by virtue of the moving process being in
the form of a Prefix instance. When the action is matched
to the one used for the mobility operation, the Process in-
stance is transferred to its new location. There is no neces-
sity to deal with code that is currently being executed.

As with concurrency and channel operation, how move-
ment is achieved is designed to be flexible, with provision
being made for distribution and code migration to be im-
plemented in different ways. One of the most obvious ways
is to serialise the Process instance and reconstitute it at its
destination. Migrating a process should then just be a case
of transmitting the serialised instance, followed by any local
data, and beginning execution at the destination. However,
this is one area in which we expect further study of the exist-
ing literature to enlighten us with more sophisticated ways
of achieving such migration.

4. RELATED WORK
There has already been a significant body of research into

providing concurrent frameworks, including those based on
process calculi. However, we believe our work to be novel
in approaching the implementation of both global discrete
time, via clock signalling, and mobility.

The π calculus has been the subject of much of this work,
primarily due to its status as the most prevalant mobile pro-
cess calculus. Obliq [4] and Pict [8] are both programming
languages with semantics founded in the π calculus, while
Nomadic Pict [10] takes this further, introducing distribu-
tion not usually present in the π calculus. Within research
related to the ambient calculus, a machine framework (PAN
citesangiorgi:safeambientsmachine) has been developed and
implemented. Process calculi, such as the Seal calculus [9]
have also been developed specifically to provide a formal
framework for a distributed implementation.

5. CONCLUSIONS AND FUTURE WORK
To conclude, we have presented the overall structure of the

DynamiTE framework for concurrent systems, with partic-
ular note to its more interesting aspects involving the use of
signalling (via clock ticks) and process migration. We have
also outlined its underlying theoretical basis in the form of
the process calculus TNT, further details of which are pro-
vided in the cited references.

We believe that the framework provides a unique way of
developing concurrent systems. It provides features which
have already proved advantageous in a theoretical setting,
such as the n-ary process synchronisation mechanism de-
scribed in 2.2. The existence of a formal theory for Dyna-
miTE’s behaviour gives many advantages over more ad-hoc
approaches, allowing the underlying mechanisms to be rigor-
ously examined before being applied to the implementation.
For example, the equivalence of two processes may be estab-
lished clearly and unambiguously in the underlying process
calculus and then used to compare the implementation of a
process to its specification.

The DynamiTE framework is still in heavy development.
At its lowest level, it provides a means of simulating the
operations of the TNT process calculus, allowing them to
be more clearly understood. In application, it can provide
a useful mechanism for structuring concurrent programs,
clearly dividing internal behaviour and interprocess commu-
nication. The presence of signalling and code migration also
means that fairly complex concepts can be leveraged by the
programmer in the simple manner provided by the frame-
work.

There are still areas we wish to explore in the future. One
such proposition is the addition of data to the clock signals,

allowing them not only to act as phasing signals but also as
a mechanism for broadcast data. It would also be interest-
ing to further expand on the plugin frameworks mentioned,
by providing more complex implementations such as inter-
process communication via web services.

Acknowledgements
This work is supported by a doctoral training award from the
Engineering and Physical Sciences Research Council (EP-
SRC).

6. REFERENCES
[1] L. Cardelli and A. D. Gordon. Mobile Ambients. In

Proc. of the 1st Intl. Conference on Foundations of
Software Science and Computation Structures
(FoSSaCS ’98), volume 1378 of Lecture Notes in
Computer Science, pages 140–155. Springer, 1998.

[2] A. Hughes. Nomadic Time (Extended Abstract). In
R. Schmidt and G. Struth, editors, Proc. of the PhD
Programme at Relational Methods in Computer
Science/Applications of Kleene Algebra
(RelMiCS/AKA) 2006, number CS-06-09 in University
of Sheffield Technical Reports, pages 60–64, 2006.

[3] A. Hughes. Timed Mobile Systems. Technical Report
CS-07-09, University of Sheffield, 2007.

[4] M. Merro, J. Kleist, and U. Nestmann. Mobile
Objects as Mobile Processes. Information and
Computation, 177:195–241, 2002.

[5] R. Milner. Communication and Concurrency.
Prentice-Hall, London, 1989.

[6] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, parts I and II. Technical Report
ECS-LFCS-89-86, University of Edinburgh, June 1989.

[7] B. Norton, G. Lüttgen, and M. Mendler. A
Compositional Semantic Theory for Synchronous
Component-Based Design. In Proc. of the 14th Intl.
Conference on Concurrency Theory (CONCUR ’03),
number 2761 in LNCS, pages 461–476. Springer, 2003.

[8] D. N. Turner. The Polymorphic Pi-calculus: Theory
and Implementation. PhD thesis, The University of
Edinburgh, 1996.

[9] J. Vitek and G. Castagna. Seal: A Framework for
Secure Mobile Computations. In Proc. of the
ICCL ’98 Workshop on Internet Programming
Languages, volume 1686 of Lecture Notes in Computer
Science, pages 47–77. Springer, 1999.

[10] P. T. Wojciechowski. Nomadic Pict: Language and
Infrastructure Design for Mobile Computation. PhD
thesis, The University of Cambridge, Mar. 2000.

