Nomadic Time
(Extended Abstract)

Andrew Hughes'

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.
e-mail: a.hughes@dcs.shef.ac.uk

1 Introduction

CCS [1] is commonly used for modelling synchronous communication between
two processes, where one sends a signal and the other receives it at the same
time (a concept referred to as local synchronization). However, it cannot directly
represent systems involving synchronization of a sender with an arbitrary num-
ber of recipient processes (known as global synchronization) in a compositional
manner. Crucially, the semantics of a broadcast agent cannot suitably be rep-
resented using CCS. If the agent is defined as transmitting a signal to each of
the recipients sequentially, through multiple local synchronizations, then its se-
mantics will become non-compositional, because such behaviour depends upon
the number of recipients. Each time a new recipient is introduced, or one of the
existing ones is removed, the semantics will have to be changed.

A solution to this deficiency lies in providing a way of determining when
all possible synchronizations have taken place. With this facility available, the
broadcast agent can recurse, transmitting signals, until this condition holds. The
family of abstract timed process calculi (including TPL[2] and CaSE[3]) allow
this by extending CCS with abstract clocks. These don’t represent real time, with
units such as minutes and seconds, but are instead used to form synchronous
cycles of internal actions followed by clock ticks. A concept known as mazimal
progress enforces the precedence of internal actions over clock ticks, allowing the
possible synchronizations to be monitored. When a synchronization takes place,
it appears to the system as an internal action. Thus, with maximal progress,
synchronizations prevent the clock from ticking, and a result, the occurrence of
a clock tick also indicates that there are no possible synchronizations.

However, the timed calculi mentioned above lack any notion of distribution
or mobility. Thus, while they can adequately represent large static systems, in-
volving both local and global synchronization, they fail to model more mobile
systems, where the location of a process can change during execution. In con-
trast, the ambient calculus [4] includes both distribution (via structures known
as ambients) and mobility (by allowing these structures to be moved, along
with their constituent processes, during execution). But, it suffers from similar
deficiencies to CCS when modelling global synchronization.

This extended abstract presents the calculus of Typed Nomadic Time (TNT),
which combines the abstract timed calculus, CaSE, with notions of distribu-
tion and mobility from the ambient calculus and its variants ([5,6]). This allows

the creation of a compositional semantics for mobile component-based systems,
which utilise the notion of communication between arbitrary numbers of pro-
cesses within a mobile framework. To extend the example of a broadcast agent
given above, this extension allow broadcasts to be localised to a particular group
of processes, which can change during execution. Section [2 provides a simple
example, illustrating the use of the calculus, while section [3 concludes with a
discussion of future work.

2 A Simple Example

Consider the familiar children’s game of musical chairs. The conduct of the game
can be divided into the following stages:

1. The players begin the game standing. The number of players is initially equal
to the number of chairs.

The music starts.

A chair is removed from the game.

The music stops.

Each player attempts to obtain a chair.

Players that fail to obtain a chair are out of the game.

The music restarts. Any players who are still in the game leave their chairs
and the next round begins (from stage three).

SN

The winner is the last player left in the game. A model of this game can be
created using the TNT process calculus.

The game environment is represented using named locations (commonly
known as localities in the literature). These localities can be nested within each
other and form a forest structure (due to the possibility of multiple localities
occurring at the top level). In the musical chairs scenario, each chair is repre-
sented by a locality, as is the ‘sin bin’, to which players are moved when they
are no longer in the game. These localities are all nested inside a further local-
ity which represents the room itself. This is not a necessity, but makes for a
cleaner solution; it allows multiple instances of the system to be nested inside
some larger system, each performing its own internal interactions and entering
into the synchronization cycle of the larger system.

The locality structure is represented in the calculus by the expression shown
below. The room locality contains multiple chair localities, each of which con-
tains 0, a process with no explicit behaviour!. The | operator connecting the
chair localities denotes parallel composition; each locality and its constituent
processes runs concurrently. CB and the ¢ and w symbols will be explained
shortly.

room|chair(0]§7 | chair[O]gB]‘{”U}. (1)

! It does exhibit contextual behaviour, due to transitions created by clock ticks.

The players themselves are represented by processes. This allows them both
to interact and to move between localities. A gamesmaster process is also in-
troduced. This doesn’t play an active role in the game itself, but is instead
responsible for performing the administrative duties of removing chairs from the
game and controlling player movement. The process definitions are summarised
in Table[1] along with the derived syntax used in this example.

Table 1. Summary of Processes and Derived Syntax for Musical Chairs

def

w= pX.(in.X + out. X + open.X) (2)

o.P ET0]0(P) (3)
CBY X (in.oul. X + open) (4)
SBY i X.in. X (5)
GM2% 0.GM3 (6)
GM3 % open chair.GM5 (7)
GM5 d:equ.(fin chair sit. X |o(GMG6)) (8)
GME6 d:equ.([m sinbin leave. X' |oc(GM2)) (9)
Player %' [sit. PInChair]o(Loser) (10)
PInChair ' o.(out chair stand.O|stand.Player) (11)
Loser %' leave.0 (12)

The presence of music is signified by the ticks of a clock o. A tick from o
is also used to represent the implicit acknowledgement that everyone who can
obtain a chair has done so, and that the remaining player left in the room has
lost. o appears as part of a set of clocks on the bottom right of the locality
definition to signify that its ticks are visible within the locality (including any
nested localities), but not outside. Instead, ticks appear as silent actions outside
the location boundaries.

The top right of a locality is used to specify a further property of the locality,
the bouncer. This is essentially a process with a very limited choice of available
actions. It has no real behaviour of its own, but instead performs the job of
managing the locality. It dictates whether processes or other localities may enter
or exit the locality, and whether the locality may be destroyed by a process in
the parent locality. Within the musical chairs model, such protection is irrelevant
for the room itself (a bouncer, w (2), is used which ensures that all possible
movements are allowed), but is essential for the chairs (4) and the sin bin (5).

It is the chair bouncer that enforces the implicit predicate that only one player
may inhabit a chair at any one time, while the sin bin bouncer prevents players
leaving the sin bin once in there.

To model stage one of the game, n player processes and n chair locations
are placed in the room. The advantage of using TNT for this model is that the
actual number of players or chairs is irrelevant. They only have to be equal at
the start to accurately model the game. The calculus allows the creation of a
compositional semantics, as discussed in section [1] which work with any n.

For the purposes of demonstration, n is assumed to be two to give the fol-
lowing starting state:

room|chair[0]§? | chair[0]§'® | o.0.Player | 0.0.Player | GM2]%. (13)

The room and chairs appear as shown earlier. The processes of the form o.0. Player
simply wait until two clock cycles have passed, the end of each being signalled by
a tick from o. The intermittent period between the ticks (the second clock cycle)
represents the playing of the music. This syntactic form, denoted more generally
by o.P (P being some arbitrary process), is derived from the core syntax of TNT
as shown in (3). Like most of the model, it relies on the stable timeout operator,
[Elo(F), where F acts if F times out on the clock, o. In this case, E, being 0,
will always time out as it has no actions to perform.

The gamesmaster (GM2 (6)) also waits for the first clock tick (the music
starting), but then evolves to GM3 (7) and uses the second cycle, prior to the
music stopping, to remove a chair from the game. Maximal progress, as explained
in section[1, ensures that this occurs before the next clock tick, as the removal
emits a silent action.

The most interesting part of the model lies in the interaction with the chairs,
which forms part of stages five to seven. The aim of stage five is to get as
many player processes as possible inside chair localities. This is handled by again
relying on maximal progress to essentially perform a form of broadcast that
centres on mobile actions. Rather than sending a signal to a number of recipients,
a request to move into a chair (see and (10)) is delivered instead.

If a chair is available, then a player process will enter it (the actual chair and
player chosen is non-deterministic). This will cause an internal action to occur,
as illustrated by (14), and this will take precedence over the clock tick. Thus,
when the clock eventually does tick, it is clear that no more players can enter
chairs. Using clocks in this manner makes the system compositional; in contrast
to other models, players and chairs can be added without requiring changes to
the process definitions.

GMS5 | Player | chair[0]§? »
s GM5 | chairl0 | PInChair]g™-“B

Stages six and seven proceed in a similar way. Stage six sees essentially the
same broadcasting behaviour applied to the losing players (see (9) and (12)).

The difference is that stage six demonstrates something which wouldn’t be pos-
sible without mobility: the broadcast is limited to those player processes which
remain in the room. Communication between processes in different localities is
disallowed in TNT, causing an implicit scoping of the broadcast. The broadcast
is again terminated by a tick from o, which, in this case, also signifies the music
starting up again. The remaining players leave their chairs (11), and the system
essentially returns to stage three, with n — 1 chairs and n — 1 players.

3 Conclusions and Future Work

This extended abstract outlines a calculus which provides a novel combination
of features, allowing arbitrary numbers of agents both to synchronize with other
agents and move around a dynamic topology, constructed from nested localities.
Current work on this calculus focuses on the formalisation of an operational
semantics and the creation of a type system to allow additional validity and
security checks to be performed. The existing equivalence theory for CaSE will
also require extension in order to encompass the new features found in TNT.
In the longer term, further case studies will be considered, which go beyond the
simple example presented here. In particular, the modelling of quorum sensing
bacteria is of interest.

Acknowledgements

This work is supported by a grant from the Engineering and Physical Sciences
Research Council (EPSRC). I would also like to thank my supervisor, Mike Stan-
nett, as well as Simon Foster and Georg Struth, for their insightful discussions
and support.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall, London (1989)

2. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117(2) (1995) 221-239

3. Norton, B., Liittgen, G., Mendler, M.: A compositional semantic theory for syn-
chronous component-based design. In: Proceedings of the 14th International Con-
ference on Concurrency Theory (CONCUR ’03). Number 2761 in Lecture Notes in
Computer Science, Springer-Verlag (2003) 461476

4. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Proceedings of the 1st International
Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS ’98). Volume 1378 of Lecture Notes in Computer Science., Springer-Verlag
(1998) 140-155

5. Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM Transactions on Programming
Languages and Systems (TOPLAS) 25(1) (2003) 1-69

6. Teller, D., Zimmer, P., Hirschkoff, D.: Using ambients to control resources. In Brim,
L., Janar, P.; Ketinsky, M., Kuera, A., eds.: Proceedings of the 13th International
Conference on Concurrency Theory (CONCUR, ’02). Number 2421 in Lecture Notes
in Computer Science, Springer-Verlag (2002) 288-303

	Nomadic Time (Extended Abstract)
	Andrew Hughes

