-
[-..: = i ; e 1 i | 'y ; ’ W F .,‘ y
i] bt WL / k% ¥ . i
\ : / SN ? . ! T4 ® R] v..J ol ¥
rl' F 1 J w . ! - : l ..I

A Framework for
Concurrent
Component-Based Design

: U T et o e
B LTIPL S T

Andrew John Hughes

-
Far i gt

TER Y BNy A\

Fi 0
g g

l‘nla fﬂ .

g

1+ Motivation
| + Existing Methods
» Making Applications Task-Centric
 DynamiTE
e Demo

e Conclusion

The End of Moore's Law?

e The Past

 New computer, same
software — (much)
faster

e Now...

 New computer, same
software — may be
faster

N W) Ot A e

Sequential Models

e Our models are still
Inherently sequential

 What happens to the
Turing machine when
there are multiple
heads operating at
the same time?

g i "‘”W : '-'..;:"'-‘-‘"’,"‘wﬂ B - T,
J’ik L‘i' k"‘ R A R e

Resource Sharlng

o Let's write a print spooler...

1.int fd =
open(“/var/lib/print_jobs”);

2.seek(fd, END_OF_FILE);
3.write(fd, “my_print_job");
4.close(fd);

e - sk h A B .!.--' = -
B PL S sngs <T

Resource Sharing

S %,h E.te%-.".‘_
open(“/var/1lib/print_jobs”);

2.flock(fd, LOCK_EX);
3.seek(fd, END_OF_FILE);
4.write(fd, “my_print_job”);
5.flock(fd, LOCK_UN);
6.close(fd);

A "‘”W : '-'..;:"'-‘-‘"’,"‘wﬂ S . .
J’ik L‘i' k"‘ R A R e

Existing Methods: Semaphores

I-IL.,: A %.a 1H ."s..* e AL \ fha &én h. x | f{ f % , *1
- :II:}' H,,"i._ SR i : _ﬁ'_ Q&&M taj“] S l\ - YRS ¢ : -,-_..“ .

Xy 2

LY

* Has a count which is modified atomically
« Performing down decreases the count

« Performing up increases the count

 With a count of one, we have mutual
exclusion (a mutex)

"-
Fiy A . !

& #: 5%‘*» Wk oy \\ ; £' /ﬁ- .~ \ | A/f ’ J | — ’-,,,,-. |

Y f
i
B
,

.1tem = produce_item();
.down(mutex);
.down(empty);
.add_item_to_buffer(item);

.up(mutex) ;
up(full);

o 0o~ W N PR
L TIPS TN T T

'.}?‘ .

Yﬁ : = N " pr =~

‘ N

L

1.item = produce_item();

.down(empty);

.down(mutex) ;

.add_item_to_buffer(item);

.up(mutex);
up(full);

O O &~ W N

- -
i

x '_ ') | E? "

s

* See how easy it Is to get this wrong?

L
g

~ An up or down may be missed

* \With multiple related semaphores, the order of
statements becomes crucial

* |t takes one miscreant to ruin everything

* Not always reproducible; it's all about timing
* And we're making everything sequential again

> e o

' - . = o

& i ¢ b i,
e - .- -

% : ‘- '- ¥ .‘-_-’. ."_‘_ = _#':,i'#"

Existing Methods Monitors

x A little better...

* \We mark sections of code which must run In
mutual exclusion

* Fit nicely with objects
* But... language dependent
* Still very prone to error

e - sk h A B o -
B PL S sngs <T

Producer — With Monitors

U- .Object item = produceltem()

* synchronized {

o If (used == BUFFER_SIZE)
o walit();

» puffer[used] = item;

* ++used,;

notifyAll(); }

N W) Ot A e

Producer — With Monitors

U- .Object item = produceltem()

* synchronized {
 while (used == BUFFER _SIZE)

o walit();
» puffer[used] = item;
* ++used,;

notifyAll(); }

A "‘”W : '-'..;:"'-‘-‘"’,"‘wﬂ S . .
J’ik L‘i' k"‘ R A R e

Back to the Drawing Board

- -
i

W »
, -"-i- %1 \ f "}*% \t‘\a W& ~ .

: I' 3

s

. We are too concerned with protectlng
resources, especially data

[
g

* Our designs are data-centric
* Instead we need to:

- Focus on minimal sequential tasks

- Let the data flow along the pipes rather than
being the centre of our universe

« Think pipelines e.g. du -h | sort -n

The Library System: Data-centric

_ e BN SV
B g N

LY

* Focus IS on data objects

- Borrower ko
- Book %
» Tasks are methods of these objects 7

e But who runs them? What is the control flow?
 And how Is concurrent access handled?
e If at all?

The Library System: Task-centric

ey N7 SV
: ') G | ﬁ @M% LA LN ;‘: |

W i

s B2

LY

* Focus on tasks:
- Borrowing a book
- Reserving a book /
» Simple sequential tasks with no shared storage '

T, 'i'l"-""II : i &
5 —q g . ._.J'i -._ T

* Long term storage can be managed by a
database guardian

e Do It once and do it well

DynamlTE

» Design the application as self-contained
seguential tasks which communicate with one
another

* You write the tasks
 DynamiTE provides the plumbing

Communication grounded in a process calculus

How ItWorks

 Process hierarchy provides operational
semantics

« EVolvers provide execution semantics
* Transitions can have side effects
* Realised by plugins

Plugins maintained by the Context

 The 'Hello World' of DynamiTE

* One task produces a message

* Another retrieves and prints it
 DynamiTE conveys the message

g i "‘”W : '-'..;:"'-‘-‘"’,"‘wﬂ B - T,
J’ik L‘i' k"‘ R A R e

Conclusion

d -
i

: '_ ') | E? :

s

* Need to treat concurrency less as an optional
extra and more as an essential component to
fully utilise the performance of new machines :

* Many existing concurrency techniques are just
too low-level

wr R e e R
LIRS T T

 DynamiTE makes things easier...

o ... but still need to rethink our designs.

N
AN

Get It Now!

* https://[savannah.nongnu.org/projects/dynamite/
» Patches welcome!

* Post-viva drinks: 5pm, Monday 19" October in
the Cavendish

g i "‘”W : '-'..;:"'-‘-‘"’,"‘wﬂ B - T,
J’ik L‘i' k"‘ R A R e

https://savannah.nongnu.org/projects/dynamite/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

