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The End of Moore's Law?

e The Past

 New computer, same
software — (much)
faster

e Now...

 New computer, same
software — may be
faster
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Sequential Models

e Our models are still
Inherently sequential

 What happens to the
Turing machine when
there are multiple
heads operating at
the same time?
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Resource Sharlng

o Let's write a print spooler...

1.int fd =
open(“/var/lib/print_jobs”);

2.seek(fd, END_OF_FILE);
3.write(fd, “my_print_job");
4.close(fd);
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Resource Sharing
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open(“/var/1lib/print_jobs”);

2.flock(fd, LOCK_EX);
3.seek(fd, END_OF_FILE);
4.write(fd, “my_print_job”);
5.flock(fd, LOCK_UN);
6.close(fd);
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Existing Methods: Semaphores
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* Has a count which is modified atomically
« Performing down decreases the count

« Performing up increases the count

 With a count of one, we have mutual
exclusion (a mutex)
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.1tem = produce_item();
.down(mutex);
.down(empty);
.add_item_to_buffer(item);

.up(mutex) ;
up(full);
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1.item = produce_item();

.down(empty);

.down(mutex) ;

.add_item_to_buffer(item);

.up(mutex);
up(full);
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* See how easy it Is to get this wrong?

L
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~ An up or down may be missed

* \With multiple related semaphores, the order of
statements becomes crucial

* |t takes one miscreant to ruin everything

* Not always reproducible; it's all about timing
* And we're making everything sequential again
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Existing Methods Monitors

x A little better...

* \We mark sections of code which must run In
mutual exclusion

* Fit nicely with objects
* But... language dependent
* Still very prone to error
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Producer — With Monitors

U- .Object item = produceltem()

* synchronized {

o If (used == BUFFER_SIZE)
o walit();

» puffer[used] = item;

* ++used,;

notifyAll(); }
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Producer — With Monitors

U- .Object item = produceltem()

* synchronized {
 while (used == BUFFER _SIZE)

o walit();
» puffer[used] = item;
* ++used,;

notifyAll(); }
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Back to the Drawing Board
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. We are too concerned with protectlng
resources, especially data

[
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* Our designs are data-centric
* Instead we need to:

- Focus on minimal sequential tasks

- Let the data flow along the pipes rather than
being the centre of our universe

« Think pipelines e.g. du -h | sort -n




The Library System: Data-centric
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* Focus IS on data objects

- Borrower ko
- Book %
» Tasks are methods of these objects 7

e But who runs them? What is the control flow?
 And how Is concurrent access handled?
e If at all?




The Library System: Task-centric
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* Focus on tasks:
- Borrowing a book
- Reserving a book /
» Simple sequential tasks with no shared storage '
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* Long term storage can be managed by a
database guardian

e Do It once and do it well



DynamlTE

» Design the application as self-contained
seguential tasks which communicate with one
another

* You write the tasks
 DynamiTE provides the plumbing

Communication grounded in a process calculus




How ItWorks

 Process hierarchy provides operational
semantics

« EVolvers provide execution semantics
* Transitions can have side effects
* Realised by plugins

Plugins maintained by the Context



 The 'Hello World' of DynamiTE

* One task produces a message

* Another retrieves and prints it
 DynamiTE conveys the message
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Conclusion
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* Need to treat concurrency less as an optional
extra and more as an essential component to
fully utilise the performance of new machines :

* Many existing concurrency techniques are just
too low-level
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 DynamiTE makes things easier...

o ... but still need to rethink our designs.
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Get It Now!

* https://[savannah.nongnu.org/projects/dynamite/
» Patches welcome!

* Post-viva drinks: 5pm, Monday 19" October in
the Cavendish
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https://savannah.nongnu.org/projects/dynamite/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

