

DynamiTE

Andrew John Hughes

A Framework for
Concurrent

Component-Based Design

Agenda

● Motivation
● Existing Methods
● Making Applications Task-Centric
● DynamiTE
● Demo
● Conclusion

The End of Moore's Law?

● The Past
● New computer, same

software – (much)
faster

● Now...
● New computer, same

software – may be
faster

Sequential Models

● Our models are still
inherently sequential

● What happens to the
Turing machine when
there are multiple
heads operating at
the same time?

Resource Sharing

1.int fd =
open(“/var/lib/print_jobs”);

2.seek(fd, END_OF_FILE);

3.write(fd, “my_print_job”);

4.close(fd);

● Let's write a print spooler...

Resource Sharing

1.int fd =
open(“/var/lib/print_jobs”);

2.flock(fd, LOCK_EX);

3.seek(fd, END_OF_FILE);

4.write(fd, “my_print_job”);

5.flock(fd, LOCK_UN);

6.close(fd);

Existing Methods: Semaphores

● Has a count which is modified atomically
● Performing down decreases the count

● Performing up increases the count

● With a count of one, we have mutual
exclusion (a mutex)

A Producer

1.item = produce_item();

2.down(mutex);

3.down(empty);

4.add_item_to_buffer(item);

5.up(mutex);

6.up(full);

A Producer

1.item = produce_item();

2.down(empty);

3.down(mutex);

4.add_item_to_buffer(item);

5.up(mutex);

6.up(full);

Problems

See how easy it is to get this wrong?

An up or down may be missed

With multiple related semaphores, the order of
statements becomes crucial

It takes one miscreant to ruin everything

Not always reproducible; it's all about timing

And we're making everything sequential again

Existing Methods: Monitors

A little better...

We mark sections of code which must run in
mutual exclusion

Fit nicely with objects

But... language dependent

Still very prone to error

Producer – With Monitors

● Object item = produceItem();
● synchronized {
● if (used == BUFFER_SIZE)
● wait();
● buffer[used] = item;
● ++used;
● notifyAll(); }

Producer – With Monitors

● Object item = produceItem();
● synchronized {
● while (used == BUFFER_SIZE)
● wait();
● buffer[used] = item;
● ++used;
● notifyAll(); }

Back to the Drawing Board

● We are too concerned with protecting
resources, especially data

● Our designs are data-centric
● Instead we need to:

– Focus on minimal sequential tasks

– Let the data flow along the pipes rather than
being the centre of our universe

● Think pipelines e.g. du -h | sort -n

The Library System: Data-centric

● Focus is on data objects
– Borrower

– Book

● Tasks are methods of these objects
● But who runs them? What is the control flow?
● And how is concurrent access handled?
● If at all?

The Library System: Task-centric

● Focus on tasks:
– Borrowing a book

– Reserving a book

● Simple sequential tasks with no shared storage
● Long term storage can be managed by a

database guardian
● Do it once and do it well

DynamiTE

● Design the application as self-contained
sequential tasks which communicate with one
another

● You write the tasks
● DynamiTE provides the plumbing
● Communication grounded in a process calculus

How It Works

● Process hierarchy provides operational
semantics

● Evolvers provide execution semantics

● Transitions can have side effects
● Realised by plugins
● Plugins maintained by the Context

Demo

● The 'Hello World' of DynamiTE
● One task produces a message
● Another retrieves and prints it
● DynamiTE conveys the message

Conclusion

● Need to treat concurrency less as an optional
extra and more as an essential component to
fully utilise the performance of new machines

● Many existing concurrency techniques are just
too low-level

● DynamiTE makes things easier...
● ... but still need to rethink our designs.

Get It Now!

● https://savannah.nongnu.org/projects/dynamite/
● Patches welcome!
● Post-viva drinks: 5pm, Monday 19th October in

the Cavendish

https://savannah.nongnu.org/projects/dynamite/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

