
Overview
Monads

Comonads
Conclusion

Comonads
Musings on ‘Signals and Comonads’
by Tarmo Uustalu and Varmo Vene

Andrew Hughes

Theory SIG - 28/10/2005

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Outline
1 Overview

Monads
Comonads
The Relationship Between Monads and Comonads
Arrows

2 Monads
The Type Class
Maybe, Maybe Not
Discussion Time

3 Comonads
Why?
The Type Class
Swimming With Comonads
Discussion Time

4 Conclusion
Final Thoughts Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Monads
Comonads
The Relationship Between Monads and Comonads
Arrows

Monads

Monads look at sequential computations with a context.
For example, a monad may be used to compose a series
of functions which manipulate a state.
Values become monadic via use of the unit function,
return. This associates the context with the value.
The bind operator, »=, allows functions to be performed on
the value within the monadic wrapper. This can allow side
effects, as essentially two functions are performed.
These two functions form the Monad type class. A type
class specifies the functions that must be implemented for
a type to be considered an instance of that class.
Note that there is no function in the Monad type class for
retrieving the pure value again.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Monads
Comonads
The Relationship Between Monads and Comonads
Arrows

Comonads

Comonads look at sequential computations in a context.

For example, a comonad may be used to represent data
within a stream.

Values are retrieved from the context using the counit
function.

The cobind function allows the value to be manipulated
within its context.

These two functions form the Comonad type class.

Note that there is no function in the Comonad type class for
placing a value in a context.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Monads
Comonads
The Relationship Between Monads and Comonads
Arrows

The Relationship

Comonads are effectively the inverse of monads.

While the monadic unit function wraps a value in a
monadic context, the comonadic unit function does the
inverse and retrieves the value from the context.

Likewise, the function used by »= takes a value and
returns a monadic result, while cobind’s function takes a
comonadic input and returns a value.

This is reflected in category theory, as the category of
comonads is the dual of the category of monads. But more
of this next time. . .

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Monads
Comonads
The Relationship Between Monads and Comonads
Arrows

Arrows

Arrows are a more general construct.

Monads and comonads can both be represented by
arrows. . .

. . . but it’s a bit like using a chainsaw to cut cake.

We don’t need the power of arrows where monads or
comonads will do.

Part 3 of the Functional Computation reading group will
look at these.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

The Monad type class

Recall the Monad type class:

Definition
class Monad m where
return :: a -> m a
(»=) :: m a -> (a -> m b) -> m b

To create a new type of monad, we simply implement
these two functions for a particular type. The type can then
engage in sequential composition via the »= function.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

Handling Errors

Functions don’t always manage to compute a value.

In many situations, an error may occur.

We need some way of modelling the fact that a function
resulted in an error.

Effectively, this means that a function that may err
produces an error value in addition to its normal set of
results.

For example, a function returning a boolean value may
actually produce one of True, False or Error.

In C++ and Java, the error value is represented by
exceptions.

In Haskell, we can use the Maybe type.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

An Example Function

Imagine a function which searches for a particular name in
a list, and returns its index.

How do we deal with the case where the name doesn’t
exist? Simply returning an integer won’t handle this.

The Maybe type is defined as:

Definition

data Maybe a = Just a | Nothing.

For a type, a, an instance of Maybe can represent either
‘just’ the value or nothing (indicating an error).

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

A Monadic Solution

So, we can type our search function as:

Example

search :: [String] -> String -> Maybe Int

But – now we have another problem. . .
It is difficult to use the result of our search as the input to
other functions.
The value we retrieved from the function is trapped inside
the Maybe data structure, which carries the additional
information about whether or not an error occurred.
This is analogous to the idea we introduced earlier of a
monad associating a value with additional information.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

Maybe Becomes A Monad

We can define an instance of the Monad class for our
Maybe type like so:

Definition
instance Monad Maybe where
return a = Just a
Just a »= k = k a
Nothing »= _ = Nothing

If our function returns a normal result, »= will simply pass
the result in as input to the next function, k. Otherwise,
Nothing is returned, regardless of k.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

Maybe and »=

With the bind function, »=, we can feed the possibly
erroneous result of one function in as input to another,
without the other function having to expect a Maybe type
as input.
For example, we could add another function,
findNumber, which finds the telephone number of a
person, using the index of their name in the original list.
This may receive an invalid index, and would thus have
type Int -> Maybe Int. Note that the input does not
need to be of type Maybe.
But what about functions that don’t return something of
type Maybe? Well, we can use the unit function, return,
to wrap any given value inside a Maybe structure e.g.
return.(>2)

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

The Type Class
Maybe, Maybe Not
Discussion Time

How Can We Use Monads?

How could we use monads to carry around some extra
state information? For example, imagine that calling a
function incurs some cost whether this be monetary,
timewise, or whatever. Can this be modelled using
monads? Remember that monads hold the possibility of
side-effects, as using »= can cause both the defined bind
operation and the supplied function to be performed.

What other possibilities are there for using monads?

What things can be more easily modelled with a monad?

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Why Use Comonads?

Are monads not sufficient to model what we need?
In some cases, monads are simply impractical.
Alternatively, comonads may just provide a better semantic
fit.
Streams are a prime example of something monads
struggle with.
With a stream, we generally want to pull data out and use
it. But, if the stream is represented by a monad, we simply
can’t do this.
Comonads thus fit perfectly, as they perform the inverse,
and retrieve values from a context.
The semantic fit is also better, as we think of data being in
a stream, rather than being associated with it.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

The Comonad type class

The Comonad type class is an inversion of the Monad type
class:

Definition
class Comonad c where
counit :: c a -> a
cobind :: (c a -> b) -> c a -> c b

Recall:

Definition
class Monad m where
return :: a -> m a
(»=) :: m a -> (a -> m b) -> m b

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Creating a Stream Type

To illustrate the use of comonads, we create a stream with:

a finite history
a present
an infinite future

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Creating a Stream Type

We define the type List to represent the history.

Definition

data List a = Nil | List a :> a

Coupling this with a present value gives us a stream with a
present value and finite history:

Definition
data LV a = List a := a

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Creating a Stream Type

The future of the stream is represented by an infinite type.
Hence, there is no base case, only a recursive one.

Definition
data Stream a = a :< Stream a

We combine this with our LV type to create our final stream
of type LVS:

Definition

data LVS a = LV a :| Stream a

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Making The Stream Comonadic

We now make the stream comonadic, which allows us to
use stream instances with the counit and cobind
functions.

Definition
instance Comonad LVS where
counit (az := a :| as) = a
cobind k d = cobindL d := k d :| cobindS d

The counit function allows us to pick out a value from the
present stream position.
The cobind function applies a given function throughout
the stream. We define cobindL and cobindS functions to
handle the cobind operation on the history and future
respectively.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Making The Stream Comonadic

Two cases exist for handling cobind over the history list;
one for the base case, and one for the recursive case.

Definition

cobindL (Nil := a :| as) = Nil
cobindL (az’ :> a’ := a :| as) = cobindL d’ :>
k d’
where d’ = az’ := a’ :| (a :< as)

d’ is a recreation of the stream in its previous state, when
the first item of the history (a’) was the present value.

cobindL applies k to the history by recreating the stream
at each point in history, and then applying k to that
particular stream.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

Making The Stream Comonadic

cobindS only has one case as the stream is infinite.

The principle is the same as for cobindL, except d’ is
now the next point on, rather than the last.

Definition

cobindS (az := a :| (a’ :< as)) = k d’ :<
cobindS d’
where d’ = az :> a := a’ :| as

Unlike the function used by in »=, cobind’s function
expects a comonadic input and returns a normal value.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

An Example Stream

We can create streams simply by specifying the values
they will contain.

Example

Nil :> 4 := 5 :| fun2str (6+)

fun2str simply uses a function, Int -> a, to create a
stream.

This is not necessarily true of all comonads. Remember:
construction is not part of the Comonad type class, as it is
with monads.

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

An Example Stream

The counit function can then be used to retrieve the
present value.

Example

counit (Nil :> 4 := 5 :| fun2str (6+)) = 5

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

An Example Stream

We can also define functions to manipulate the stream, e.g.

Example

next ((_ := _) :| (x :< _)) = x

and then use cobind to apply them.

Example

counit $ cobind next (Nil :> 3 :> 4 := 5 :|
fun2str (6+)) = 6

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Why?
The Type Class
Swimming With Comonads
Discussion Time

How Can We Use Comonads?

Recall the Parser example from our first reading group.
As comonads are a dual to monads, could a comonad be
created which serializes a parsed structure?

What other possibilities are there for using comonads?

What concepts are more semantically appropriate as
comonads, as opposed to monads?

Andrew Hughes Comonads: An Introduction



Overview
Monads

Comonads
Conclusion

Final Thoughts

In Conclusion. . .

Monads provide a useful way of composing functions
where some contextual information needs to be carried
around.

Comonads complement monads, and allow us to represent
values immersed in some context e.g. data within a
stream.

So what can arrows achieve that these methods can’t?

Hopefully, we will find out when we cover this topic.

The mailing list (theory@dcs.shef.ac.uk) and wiki are
available for further discussion.

Thanks for listening.

http://www.dcs.shef.ac.uk/wiki/bin/view/TheorySIG

Andrew Hughes Comonads: An Introduction


	Overview
	Monads
	Comonads
	The Relationship Between Monads and Comonads
	Arrows

	Monads
	The Type Class
	Maybe, Maybe Not
	Discussion Time

	Comonads
	Why?
	The Type Class
	Swimming With Comonads
	Discussion Time

	Conclusion
	Final Thoughts


