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What Do We Mean By Localities?

A locality acts as a way of representing distribution.
It represents the space where a number of processes and
resources exist.
Localities can be observed or controlled.
Observation of localities is necessary to implement
process migration between them.
A locality can be named, and then used as the target for a
communication or the destination of a migrating process.
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Localities For Equivalence

The traditional notion of equivalence associated with CCS
is bisimulation.
Bisimulation distinguishes two processes through
observing their communication.
A bisimulation views a parallel process as equivalent to its
non-deterministic interleaving.
However, they differ as the first involves more than one
process operating concurrently.
Practically, the first could be distributed over multiple hosts.
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CCS

We begin by looking at localities in the context of CCS.
CCS defines processes in terms of the actions they can
perform.
We assume a set of names, N , ranged over by a, b, . . . ,
and a corresponding set of co-names, N = {a|a ∈ N}.
N ∪N gives the set of visible actions, Act . Silent or
internal actions are represented by τ .
Similarly, we have a set of process variables, V, ranged
over by P, Q, . . . . The grammar of CCS is then defined as
follows (we omit recursion and relabelling from this
definition for brevity):

Definition
P, Q ::= 0 | a.P | a.P | P\a | P + Q | (P|Q)

.
Andrew Hughes Process Algebras With Localities



Introduction
Locations From A Concrete Perspective

Conclusion

Localities
Location Equivalence

Semantics for CCS

Act
α.E α→ E

Sum1
E α→ E ′

E + F α→ E ′
Sum2

F α→ F ′

E + F α→ F ′

Com1
E α→ E ′

E | F α→ E ′ | F
Com2

F α→ F ′

E | F α→ E | F ′
Com3

E a→ E ′, F a→ F ′

E | F τ→ E ′ | F ′

Res
E β→ E ′

E \ a β→ E ′ \ a
β /∈ {a, a}

Table: CCS SOS Rules

E and F are processes from the set of process names, V.
α and β are any actions from Act ∪ τ .
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A CCS Data Protocol

Let’s take the simple example of a protocol which sends
and receives data.
Our protocol consists of two processes, the Sender and
the Receiver.
The two communicate using a channel, a. This is
restricted, giving Protocol = (Sender |Receiver)\a
The sender is simply defined as Sender = in.a.Sender .
Similarly, our receiver is Receiver = a.τ.out .Receiver .
Thus, the usual series of actions is in.τ.τ.out , with the first
τ being the synchronization on a.
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Weak Bisimulation

A bisimulation is a symmetric binary relation, R, between
two processes, P and Q.

The existence of PRQ and P a→ P ′ implies
∃Q′ : Q a→ Q′ ∧ P ′RQ′.
For weak bisimulation, we effectively ignore τ transitions.
We consider a series of τ transitions, τ→ τ→ . . . , to be
equivalent to τ⇒ and τ⇒ a→ τ⇒ to be equivalent to a→.
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The Protocol In A Single Process

We can consider our protocol at a more abstract level by
giving it a specification.
We define this as PSpec = in.out .PSpec. This views the
protocol as a black box, which just takes an input and
returns an output, without considering the internal
processing.
By weak bisimulation, this is equivalent to our previous
protocol.
But, our specification can be implemented on only one
process, while our earlier implementation actually uses
two.
Even strong bisimulation sees the two as equivalent, if the
single process happens to perform the same number of τ
actions i.e. in.τ.τ.out .0 ∼ (in.a.0|a.out .0)\a.
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General Bisimulation Problems

More generally, we can take a process such as a.0|b.0,
where b 6= a.
The equivalent interleaving of this process is thus
a.b.0 + b.a.0.
Again, the two are strongly bisimilar, but yet the first runs
on two processes, while the first only runs on one.
If our system is distributed, with our processes actually
being on separate hosts, then it may be important for us to
distinguish between these two cases.
Thus, we need a different equivalence to tell the two apart.
This is how localities originated.
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Adding Localities

We can add an additional piece of syntax to CCS: l :: P.
This specifies that P is located at l ∈ Loc, the set of
localities.
There are two different approaches to providing semantics
with this additional syntax. The static approach assigns
localities beforehand, and they are observed within the
transitions. In contrast, the dynamic approach generates
localities as part of each transition, making each locality an
identifier for each non-silent action. This leads to the
generation of a causal path.
Here, we will just consider the dynamic approach. Further
details on location equivalence, including proofs and
details of the static approach, are available in [GA93] and
[Cas01].
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Transition Semantics for LCCS
Act1

α.E α−→
l

l :: E
for any l ∈ Loc Act2

E α−→
u

E ′

l :: E α−→
lu

l :: E ′

Sum1
E α−→

u
E ′

E + F α−→
u

E ′
Sum2

F α−→
u

F ′

E + F α−→
u

F ′

Com1
E α−→

u
E ′

E | F α−→
u

E ′ | F
Com2

F α−→
u

F ′

E | F α−→
u

E | F ′

Res
E β−→

u
E ′

E \ a β−→
u

E ′ \ a
β /∈ {a, a}

Table: LCCS SOS Rules
u is any location.
Note that τ transitions are not assigned locations.
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Location Equivalence

We can now define an equivalence based on localities.
A relation, R ⊆ LCCS × LCCS is called a dynamic location
bisimulation (dlb) iff for all (p, q) ∈ R and for all
a ∈ Act , u ∈ Loc:

1 P a
=⇒
u

P ′ =⇒ ∃Q′ such that Q a
=⇒
u

Q′ and (P ′, Q′) ∈ R

2 Q a
=⇒
u

Q′ =⇒ ∃P ′ such that P a
=⇒
u

P ′ and (P ′, Q′) ∈ R

3 P τ⇒ P ′ =⇒ ∃Q′ such that Q τ⇒ Q′ and (P ′, Q′) ∈ R
4 Q τ⇒ Q′ =⇒ ∃P ′ such that P τ⇒ P ′ and (P ′, Q′) ∈ R

The largest dlb is called dynamic location equivalence.
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Back To The Protocol

With this equivalence, we can distinguish between PSpec
and Protocol .
With LCCS, Protocol has the sequence of transitions
in−→
l

tau→tau→ out−−→
k

.

PSpec has the transition sequence in−→
l

out−−→
lk

.

Thus, Protocol ends up as (l :: Sender |k :: Receiver) \ a.
PSpec ends up as l :: k :: PSpec.
The sequences clearly differ. PSpec has a history of
locations, resulting from the two transitions taking place on
the same process. However, the transitions in Protocol
take place on separate processes, leading to two separate
locations. Note that it is not the identity, but the distribution
of these localities that is important.
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A Chance In Perspective

So far we have looked at localities from the perspective of
enriching existing equivalence theories.
The localities in this context have been fairly abstract, in
that they exist solely as a way to distinguish the distribution
of processes.
Calculi with a concrete notion of localities allow the
localities to be observable and have identities.
Most notably, we can use localities as a means to provide
a different form of mobility.
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What Is Mobility?

Mobility is probably most well-known from the π calculus.
However, mobility is the π calculus is not so much to do
with processes, as it is to do with scope.
We can’t really move processes in the π calculus because
they have no distribution i.e. we don’t know where they are
to start with!
Migration of processes from one place to another is only
possible if we add a notion of location to the calculus.
Probably the simplest way to do this is as we have already
seen; by assigning localities to the processes.
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The Mini π Calculus

The π calculus has provided a useful basis to several
distributed calculi. It is basically a value-passing variant of
CCS, with the generalisation of both variables and
channels into a common set of pure names.
The mini-π calculus was introduced by Milner in [Mil92] as
a subset of the full π calculus. Notably, it doesn’t include
either the match or summation operators, or the agent
notation.

Definition
P, Q ::= 0 | x(u).P | x〈u〉.P | (νx)P | (P|Q) | !P

Again, P and Q are processes. x and u are both names,
as there is no distinction between variables and channels.
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Variants Of The π Calculus

The asynchronous variant is also commonly used. This is
derived by simply replacing x〈u〉.P with x〈u〉, making
output non-blocking.
Replication (!P) may also be replaced by recursion.
A polyadic variant can also be created by generalising the
input and output prefixes to use vectors (x(~y) and x〈~y〉).
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Origins Of The Calculus

The π1l calculus originated as the πl calculus in a
paper[AP94] by Amadio and Prasad to give failure
semantics to the language, Facile. This added a flat notion
of locations to the synchronous polyadic π calculus.
The version we will consider was published in a later paper
[Ama97] by Amadio, and is instead based on the
asynchronous variant of the full calculus.
It in fact builds on the π1 calculus, which is an
asynchronous typed variant satisfying the unique receiver
property.
With this property, each channel has at most one receiver.
The result is that the destination of an output is
pre-determined. This property is enforced by the type
system of the calculus.
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Extensions Within The Calculus

The calculus is concerned primarily with the detection of
failure.
Thus, it adds syntax to model failure and its detection.
Failure is associated with a particular location, so syntax is
also added to represent these locations, as we saw earlier.
l :: P represents a process, P, running at the location, l .
Note that we continue with our previous notation rather
than using that given in the paper.
Outputs are generalised into a larger category of
messages, which includes additional primitives:

stop(l), which stops a location, l .
spawn(l , P), which spawns a process P at l .
ping(l , b1, b2), which checks that the location l is running,
and sends a message on either b1 or b2, depending on the
result.
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Main Features

Objective migration – whichever process contains
spawn(l , P) causes the process P to move.
Migration also occurs via message passing.
Each locality has a locality-process, which records the
status of the location and handles spawn, ping and stop
requests.
Global communication, but more elegant due to
asynchrony and the unique receiver property.
The π1l calculus can encode the π1 calculus, which in turn
can encode the π calculus.
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The Join Calculus

The join calculus [FG96] is another variant of the
asynchronous π calculus. The differences lie in the
receptors.
They differ from those in the π calculus in that:

1 Localisation is enforced in the syntax and scoping
discipline. The inputs are defined in the same statement as
the output they connect to.

2 Channel receptors are permanently defined, and are not on
a one-shot system like in the π calculus. Thus, a join
calculus input is akin to a replicated input (e.g. !x(y).P) in
the π calculus.

3 Every channel must be statically defined, unlike in the π
calculus which allows (νz)z(y).(x(u).P|y(v).Q)|z〈x〉.
Names are bound by their definition, so receptors can’t be
renamed and two different receptors can never be equated.
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The π and Join Calculi

The changes in the join calculus make the calculus easier
to implement in a distributed way.
In the π calculus, we can define:

Definition
x(y).P|x(z).Q|x〈u〉

If the two receptors, x(y).P and x(z).Q are far apart, this
runs into a distributed consensus problem, as a decision
has to be made over which process takes the output.
The join calculus avoids this by changing the syntax to:

Definition
def (x〈y〉 . P) ∧ (x〈z〉 . Q) in x〈a〉
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Join Calculus Syntax Changes

In fact, the syntax of the join calculus means that the above
is actually the analogue of the following π calculus
definition:

Definition
(νx)(!x(y).P|!x(z).Q|x〈u〉)

This makes join calculus receptors localised, permanently
available and statically defined.
The syntax overloads the same notation for input and
output, as the two are differentiated by their position in the
syntax.
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Join Patterns

Asynchronous messaging means that only a single simple
message can be transmitted. To allow synchronization, the
join calculus includes join patterns to define groups of
messages. Names in a pattern must be distinct, but names
in different conjuncts need not. Simultaneous substitution
takes place as a result, and non-determinism may occur.

Definition
def (x〈y〉|t〈u〉 . P) ∧ (x〈z〉|t〈v〉 . Q) in x〈a〉|t〈c〉|x〈b〉
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Reduction in the join calculus

This process is generalised to form a reduction rule. This
forms the crux of the semantics for the calculus.

Definition
def (D ∧ J . P) in Jσ|Q → def (D ∧ J . P) in Pσ|Q

In addition, standard contextual rules and a structural
congruence ≡ are defined. The latter allows def to be
pushed in front of a term.
The semantics were originally defined using a Chemical
Abstract Machine (CHAM) proposed by Berry and Boudol
[GG92].
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The Distributed Variant

The distributed variant [CF96] adds locations and
primitives for migration.
A located declaration is added of the form l[D : P].
This defines the input channels located at l .
Again, the locality is scoped over its def rule and the
declaration is unique and global.
However, localities are unique within the rule, unlike
channels.
Receptors must be defined i.e. T is not a valid definition.
Localities can be nested, giving a hierarchical structure.

Definition
def a[x〈y〉 . P : Q ∧ x〈z〉 . Q : R) in S
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Migration

The new process construct, go〈l , k〉 allows the migration of
processes.
Migration is subjective, unlike in Amadio’s calculus. The go
construct moves the locality in which the executing process
resides to become a sublocation of l .
Upon termination of the migration, a null message, k〈〉 is
emitted.
The moving locality, m, must not be a superlocality of l , as
its entire subtree is also moved.
Structuring is also important in failure, as all sublocations
fail too. Failure detection is provided by additional halt and
detect messages.
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Expressivity of the Join Calculus

The distributed join calculus is equivalent to the join
calculus where circular migration does not occur. The
asynchronous π calculus can be encoded in the join
calculus, and vice versa.
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A Different Perspective

The ambient calculus [CA98] emphasises mobility over
communication, whereas the reverse could be said of the π
calculus.
The mobility primitives are sufficient for the full
expressiveness of the calculus, and the communication
primitives are encoded using these.
Ambients are named bounded areas with a collection of
processes and subambients.
As with the join calculus, migration is subjective and moves
the entire subtree. However, processes can also dissolve
boundaries using the open primitive.
Processes within an ambient communicate using names,
capabilities or sequences of these by emitting into the local
ether.
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Ambient Movement

Ambients can only enter sibling ambients and exit parent
ambients.
Only ambients within the same parent can be opened.
This gives proximity mobility, which is appropriate in the
context of hierarchical administrative domains, which the
calculus was designed to model.
The capabilities model authorisation, and administrate
ambient movement.
Ambients are written as n[P] where n is its name and P its
contents. The core mobility grammar is:

Definition
P, Q ::= 0 | M.P | P|Q | (νn)P | !P | n[P]
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Mobility Constructs

Reductions in the ambient calculus take place equally
outside as well as inside ambients, even when the
surrounding ambient is moving.
i.e. P → Q ⇒ n[P] → n[Q]

The mobility constructs (M above) are:
1 in n.P which moves the surrounding ambient inside n e.g.

n[in m.P|Q]|m[R] → m[n[P|Q]|R]
2 out n.P moves the surrounding ambient out of the parent

ambient n e.g. m[n[out m.P|Q]|R] → n[P|Q]|m[R]
3 open n.P opens the ambient n e.g. open m.P|m[Q] → P|Q
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Further Points On The Calculus

The same name may coexist both at the same level and at
different levels of the hierarchy.
One is chosen non-deterministically.
Empty ambients are still observable.
Same-named ambients are distinct.
Ambients resemble the named locations we saw earlier,
but are more like mobile agents.
The calculus can encode the asynchronous π calculi and
some λ calculus. A representation of a Turing machine is
also given as an example in the paper.
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Combining The Two

The Seal calculus [VC99] may be described as a polyadic
synchronous variant of the π calculus.
But, it follows many ideas seen in the Ambient calculus
when it comes to modelling networks and security
concerns.
The calculus introduces a new type of name, the seal. A
seal (n[P]) is a process and can encapsulate other
processes, again giving us a hierarchical structure.
Primitive communication is restricted to local
communication and linear proximity communication.
Further, more distant communication must be routed.
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Channels In The Seal Calculus

Channels are tagged with a notation that specifies where
they belong.
The tags are defined by the following grammar:

Definition
η ::= ? | ↑ | n

? refers to the current seal
↑ refers to the parent seal
n is the name of a child seal.
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Communication

Channel communication is much the same as in the π
calculus.

Definition

a ::= xη(~y) | xη(~y)

Local communication takes place between two channels
tagged with ?.
Upward or downward communication takes place
between one channel tagged with ? and another tagged
with ↑ or n.
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Portals

Non-local communication is influenced by security.
For seal A to communicate with channel x in seal B, B
must first open a portal to allow this.
A portal forms a means of linear access permission for a
channel, which may only be used once.
This is represented by the notation opensx .P which opens
a portal for seal s and then continues as P.

Example

n[x↑(~z).P]|x?(~y).Q|opennx .0 → n[P]|Q{~z/~y}|0
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Seal Mobility

Seals may be transmitted over channels, and this forms
the mobility within the seal calculus.
a is extended with two prefixing actions for transmitting
seals.

Definition

a ::= xη{y} | xη{~y}

Note that only a single seal name can be output. Copies of
the same seal are placed in the input vector.
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The Effects Of Seal Movement

A seal is moved by a process contained in the parent.
Thus, mobility is objective, unlike in the ambient calculus.
Renaming and duplication may both take place during the
movement of seals.
If P = x↑{y}.P ′ and R = x?{z}.R′, then:

Example

R|n[P|m[Q]|y [S]]|opennx .0 → R′|z[S]|n[P′|m[Q]]

Note that the seal always moves from the sender to the
receptor seal, so x? in P and xn in R would also have
worked.
Also, this is spawn in disguise; a new locality is created
through renaming with the contents of the old one.
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Comparing The Seal Calculus With The Ambient
Calculus

The ambient calculus is one of the sources of inspiration
for the seal calculus.
However, the seal calculus demonstrates objective mobility
and an emphasis on communication, in contrast with the
ambient calculus.
Environmental control is preferred over capabilities.
There is no equivalent of the dangerous open construct.
Both satisfy the perfect firewall equation: (νx)x [P] = 0 i.e.
a process can be completely isolated.
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Using Localities

Localities seem to provide a more practical form of mobility
than that demonstrated by the π calculus.
In addition to giving migration, localities also allow us to
know where a process ‘is’. With this knowledge, we can:

1 Consider process distribution.
2 Observe failure.
3 Represent hierarchical structures and other physical

notions such as hosts on a network.
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Combining Localities With Time

Recall the Cashew-Nuts calculus. . .
This has an implicit notion of hierarchy in the form of clock
hiding.
Could localities be combined with this notion to make this
explicit?
This would also allow these hierarchies to be observed and
migrated.
Nomadic Nuts... ;)
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In Conclusion. . .

Localities can be used in a variety of ways.
We have seen:

1 A form of bisimulation, using localities to represent
distribution.

2 A concrete notion of locality added to the π calculus to
allow migration and failure detection.

3 A hierarchy of localities in the join, ambient and seal calculi,
which give structure to the processes represented.

The mailing list (theory@dcs.shef.ac.uk) and wiki are
available for further discussion.
Thanks for listening.

http://www.dcs.shef.ac.uk/wiki/bin/view/TheorySIG
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